Dada una array arr[] de tamaño N y un entero K . La tarea es encontrar todas las combinaciones únicas de la array dada de modo que la suma de los elementos en cada combinación sea igual a K .
Ejemplos:
Entrada: arr[] = {1, 2, 3}, K = 3
Salida:
{1, 2}
{3}
Explicación:
Estas son las combinaciones cuya suma es igual a 3.Entrada: arr[] = {2, 2, 2}, K = 4
Salida:
{2, 2}
Enfoque: algunos elementos se pueden repetir en la array dada. Asegúrese de iterar sobre el número de ocurrencias de esos elementos para evitar combinaciones repetidas. Una vez que haces eso, las cosas son bastante sencillas. Llame a una función recursiva con la suma restante y haga que los índices avancen. Cuando la suma llegue a K, imprima todos los elementos que fueron seleccionados para obtener esta suma.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find all unique combination of // given elements such that their sum is K void unique_combination(int l, int sum, int K, vector<int>& local, vector<int>& A) { // If a unique combination is found if (sum == K) { cout << "{"; for (int i = 0; i < local.size(); i++) { if (i != 0) cout << " "; cout << local[i]; if (i != local.size() - 1) cout << ", "; } cout << "}" << endl; return; } // For all other combinations for (int i = l; i < A.size(); i++) { // Check if the sum exceeds K if (sum + A[i] > K) continue; // Check if it is repeated or not if (i > l and A[i] == A[i - 1]) continue; // Take the element into the combination local.push_back(A[i]); // Recursive call unique_combination(i + 1, sum + A[i], K, local, A); // Remove element from the combination local.pop_back(); } } // Function to find all combination // of the given elements void Combination(vector<int> A, int K) { // Sort the given elements sort(A.begin(), A.end()); // To store combination vector<int> local; unique_combination(0, 0, K, local, A); } // Driver code int main() { vector<int> A = { 10, 1, 2, 7, 6, 1, 5 }; int K = 8; // Function call Combination(A, K); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to find all unique combination of // given elements such that their sum is K static void unique_combination(int l, int sum, int K, Vector<Integer> local, Vector<Integer> A) { // If a unique combination is found if (sum == K) { System.out.print("{"); for (int i = 0; i < local.size(); i++) { if (i != 0) System.out.print(" "); System.out.print(local.get(i)); if (i != local.size() - 1) System.out.print(", "); } System.out.println("}"); return; } // For all other combinations for (int i = l; i < A.size(); i++) { // Check if the sum exceeds K if (sum + A.get(i) > K) continue; // Check if it is repeated or not if (i > l && A.get(i) == A.get(i - 1) ) continue; // Take the element into the combination local.add(A.get(i)); // Recursive call unique_combination(i + 1, sum + A.get(i), K, local, A); // Remove element from the combination local.remove(local.size() - 1); } } // Function to find all combination // of the given elements static void Combination(Vector<Integer> A, int K) { // Sort the given elements Collections.sort(A); // To store combination Vector<Integer> local = new Vector<Integer>(); unique_combination(0, 0, K, local, A); } // Driver code public static void main(String[] args) { Integer[] arr = { 10, 1, 2, 7, 6, 1, 5 }; Vector<Integer> A = new Vector<>(Arrays.asList(arr)); int K = 8; // Function call Combination(A, K); } } // This code is contributed by PrinciRaj1992
Python3
# Python 3 implementation of the approach # Function to find all unique combination of # given elements such that their sum is K def unique_combination(l, sum, K, local, A): # If a unique combination is found if (sum == K): print("{", end="") for i in range(len(local)): if (i != 0): print(" ", end="") print(local[i], end="") if (i != len(local) - 1): print(", ", end="") print("}") return # For all other combinations for i in range(l, len(A), 1): # Check if the sum exceeds K if (sum + A[i] > K): continue # Check if it is repeated or not if (i > l and A[i] == A[i - 1]): continue # Take the element into the combination local.append(A[i]) # Recursive call unique_combination(i + 1, sum + A[i], K, local, A) # Remove element from the combination local.remove(local[len(local) - 1]) # Function to find all combination # of the given elements def Combination(A, K): # Sort the given elements A.sort(reverse=False) local = [] unique_combination(0, 0, K, local, A) # Driver code if __name__ == '__main__': A = [10, 1, 2, 7, 6, 1, 5] K = 8 # Function call Combination(A, K) # This code is contributed by # Surendra_Gangwar
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to find all unique combination of // given elements such that their sum is K static void unique_combination(int l, int sum, int K, List<int> local, List<int> A) { // If a unique combination is found if (sum == K) { Console.Write("{"); for (int i = 0; i < local.Count; i++) { if (i != 0) Console.Write(" "); Console.Write(local[i]); if (i != local.Count - 1) Console.Write(", "); } Console.WriteLine("}"); return; } // For all other combinations for (int i = l; i < A.Count; i++) { // Check if the sum exceeds K if (sum + A[i] > K) continue; // Check if it is repeated or not if (i >l && A[i] == A[i - 1]) continue; // Take the element into the combination local.Add(A[i]); // Recursive call unique_combination(i + 1, sum + A[i], K, local, A); // Remove element from the combination local.RemoveAt(local.Count - 1); } } // Function to find all combination // of the given elements static void Combination(List<int> A, int K) { // Sort the given elements A.Sort(); // To store combination List<int> local = new List<int>(); unique_combination(0, 0, K, local, A); } // Driver code public static void Main(String[] args) { int[] arr = { 10, 1, 2, 7, 6, 1, 5 }; List<int> A = new List<int>(arr); int K = 8; // Function call Combination(A, K); } } // This code is contributed by Rajput-Ji
Javascript
<script> // JavaScript implementation of the approach // Function to find all unique combination of // given elements such that their sum is K function unique_combination(l, sum, K, local, A) { // If a unique combination is found if (sum == K) { document.write("{"); for (let i = 0; i < local.length; i++) { if (i != 0) document.write(" "); document.write(local[i]); if (i != local.length - 1) document.write(", "); } document.write("}" + "<br>"); return; } // For all other combinations for (let i = l; i < A.length; i++) { // Check if the sum exceeds K if (sum + A[i] > K) continue; // Check if it is repeated or not if (i > l && A[i] == A[i - 1]) continue; // Take the element into the combination local.push(A[i]); // Recursive call unique_combination(i + 1, sum + A[i], K, local, A); // Remove element from the combination local.pop(); } } // Function to find all combination // of the given elements function Combination(A, K) { // Sort the given elements A.sort((a, b) => a - b); // To store combination let local = []; unique_combination(0, 0, K, local, A); } // Driver code let A = [10, 1, 2, 7, 6, 1, 5]; let K = 8; // Function call Combination(A, K); // This code is contributed by _saurabh_jaiswal </script>
{1, 1, 6} {1, 2, 5} {1, 7} {2, 6}
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA