Recuento de Nodes de hoja del árbol cuya string ponderada es un palíndromo

Dado un árbol N-ario , y los pesos que están en forma de strings de todos los Nodes, la tarea es contar el número de Nodes hoja cuyos pesos son palíndromos.

Ejemplos:  

Input: 
               1(ab)
              /  \
       (abca)2     5 (aba)
          /   \ 
   (axxa)3     4 (geeks)
Output: 2
Explanation: 
Only the weights of the leaf nodes
"axxa" and "aba" are palindromes.

Input: 
               1(abx)
              /  
            2(abaa) 
           /    
          3(amma)  
Output: 1
Explanation: 
Only the weight of the leaf
node "amma" is palindrome.

Enfoque: Para resolver el problema mencionado anteriormente, siga los pasos que se detallan a continuación:  

  • La primera búsqueda en profundidad se puede utilizar para recorrer el árbol completo.
  • Realizaremos un seguimiento de los padres durante el recorrido para evitar la array de Nodes visitada.
  • Inicialmente, para cada Node, podemos establecer una bandera y si el Node tiene al menos un hijo (es decir, un Node que no sea hoja), restableceremos la bandera.
  • Los Nodes sin hijos son los Nodes hoja. Para cada Node de hoja, verificaremos si su string es palíndromo o no. Si es así, entonces incremente el conteo.

A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
int cnt = 0;
 
vector<int> graph[100];
vector<string> weight(100);
 
// Function that returns true
// if x is a palindrome
bool isPalindrome(string x)
{
    int n = x.size();
    for (int i = 0; i < n / 2; i++) {
        if (x[i] != x[n - 1 - i])
            return false;
    }
    return true;
}
 
// Function to perform DFS on the tree
void dfs(int node, int parent)
{
    int flag = 1;
 
    // Iterating the children of current node
    for (int to : graph[node]) {
 
        // There is at least a child
        // of the current node
        if (to == parent)
            continue;
        flag = 0;
        dfs(to, node);
    }
 
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1) {
        // Weight of the current node
        string x = weight[node];
 
        // If the weight is a palindrome
        if (isPalindrome(x))
            cnt += 1;
    }
}
 
// Driver code
int main()
{
 
    // Weights of the node
    weight[1] = "ab";
    weight[2] = "abca";
    weight[3] = "axxa";
    weight[4] = "geeks";
    weight[5] = "aba";
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << cnt;
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
class GFG{
 
static int cnt = 0;
 
static Vector<Integer> []graph = new Vector[100];
static String []weight = new String[100];
 
// Function that returns true
// if x is a palindrome
static boolean isPalindrome(String x)
{
    int n = x.length();
    for (int i = 0; i < n / 2; i++)
    {
        if (x.charAt(i) != x.charAt(n - 1 - i))
            return false;
    }
    return true;
}
 
// Function to perform DFS on the tree
static void dfs(int node, int parent)
{
    int flag = 1;
 
    // Iterating the children of current node
    for (int to : graph[node])
    {
 
        // There is at least a child
        // of the current node
        if (to == parent)
            continue;
        flag = 0;
        dfs(to, node);
    }
 
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1)
    {
        // Weight of the current node
        String x = weight[node];
 
        // If the weight is a palindrome
        if (isPalindrome(x))
            cnt += 1;
    }
}
 
// Driver code
public static void main(String[] args)
{
    for(int i = 0; i < graph.length;i++)
        graph[i] = new Vector<Integer>();
         
    // Weights of the node
    weight[1] = "ab";
    weight[2] = "abca";
    weight[3] = "axxa";
    weight[4] = "geeks";
    weight[5] = "aba";
 
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
 
    dfs(1, 1);
 
    System.out.print(cnt);
}
}
 
// This code is contributed by amal kumar choubey

Python3

# Python3 implementation of the approach
cnt = 0
 
graph = [0] * 100
for i in range(100):
    graph[i] = []
     
weight = [0] * 100
 
# Function that returns true
# if x is a palindrome
def isPalindrome(x: str) -> bool:
     
    n = len(x)
     
    for i in range(n // 2):
        if (x[i] != x[n - 1 - i]):
            return False
 
    return True
 
# Function to perform DFS on the tree
def dfs(node: int, parent: int) -> None:
     
    global cnt, graph, weight
 
    flag = 1
 
    # Iterating the children of current node
    for to in graph[node]:
 
        # There is at least a child
        # of the current node
        if (to == parent):
            continue
         
        flag = 0
        dfs(to, node)
 
    # Current node is connected to only
    # its parent i.e. it is a leaf node
    if (flag == 1):
         
        # Weight of the current node
        x = weight[node]
 
        # If the weight is a palindrome
        if (isPalindrome(x)):
            cnt += 1
 
# Driver code
if __name__ == "__main__":
 
    # Weights of the node
    weight[1] = "ab"
    weight[2] = "abca"
    weight[3] = "axxa"
    weight[4] = "geeks"
    weight[5] = "aba"
 
    # Edges of the tree
    graph[1].append(2)
    graph[2].append(3)
    graph[2].append(4)
    graph[1].append(5)
 
    dfs(1, 1)
 
    print(cnt)
 
# This code is contributed by sanjeev2552

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG{
 
static int cnt = 0;
 
static List<int> []graph = new List<int>[100];
static String []weight = new String[100];
 
// Function that returns true
// if x is a palindrome
static bool isPalindrome(String x)
{
    int n = x.Length;
    for(int i = 0; i < n / 2; i++)
    {
       if (x[i] != x[n - 1 - i])
           return false;
    }
    return true;
}
 
// Function to perform DFS on the tree
static void dfs(int node, int parent)
{
    int flag = 1;
 
    // Iterating the children of
    // current node
    foreach (int to in graph[node])
    {
 
        // There is at least a child
        // of the current node
        if (to == parent)
            continue;
        flag = 0;
        dfs(to, node);
    }
 
    // Current node is connected to only
    // its parent i.e. it is a leaf node
    if (flag == 1)
    {
         
        // Weight of the current node
        String x = weight[node];
 
        // If the weight is a palindrome
        if (isPalindrome(x))
            cnt += 1;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    for(int i = 0; i < graph.Length; i++)
       graph[i] = new List<int>();
         
    // Weights of the node
    weight[1] = "ab";
    weight[2] = "abca";
    weight[3] = "axxa";
    weight[4] = "geeks";
    weight[5] = "aba";
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
 
    Console.Write(cnt);
}
}
 
// This code is contributed by amal kumar choubey

Javascript

<script>
 
    // JavaScript implementation of the approach
     
    let cnt = 0;
  
    let graph = new Array(100);
    let weight = new Array(100);
 
    // Function that returns true
    // if x is a palindrome
    function isPalindrome(x)
    {
        let n = x.length;
        for (let i = 0; i < parseInt(n / 2, 10); i++)
        {
            if (x[i] != x[n - 1 - i])
                return false;
        }
        return true;
    }
 
    // Function to perform DFS on the tree
    function dfs(node, parent)
    {
        let flag = 1;
 
        // Iterating the children of current node
        for (let to = 0; to < graph[node].length; to++)
        {
 
            // There is at least a child
            // of the current node
            if (graph[node][to] == parent)
                continue;
            flag = 0;
            dfs(graph[node][to], node);
        }
 
        // Current node is connected to only
        // its parent i.e. it is a leaf node
        if (flag == 1)
        {
            // Weight of the current node
            let x = weight[node];
 
            // If the weight is a palindrome
            if (isPalindrome(x))
                cnt += 1;
        }
    }
     
    for(let i = 0; i < graph.length;i++)
        graph[i] = [];
          
    // Weights of the node
    weight[1] = "ab";
    weight[2] = "abca";
    weight[3] = "axxa";
    weight[4] = "geeks";
    weight[5] = "aba";
  
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
  
    dfs(1, 1);
  
    document.write(cnt);
     
</script>
Producción: 

2

 

Publicación traducida automáticamente

Artículo escrito por muskan_garg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *