Dado un árbol y los pesos (en forma de strings) de todos los Nodes, la tarea es contar los Nodes cuyos pesos no contienen ningún carácter duplicado.
Ejemplos:
Aporte:
Salida: 2
Solo las strings de los Nodes 1 y 4 contienen strings únicas.
Enfoque: Realice dfs en el árbol y para cada Node, verifique si su string contiene caracteres duplicados o no. De lo contrario, incremente el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int cnt = 0; vector<int> graph[100]; vector<string> weight(100); // Function that returns true if the // string contains unique characters bool uniqueChars(string x) { map<char, int> mp; int n = x.size(); for (int i = 0; i < n; i++) mp[x[i]]++; if (mp.size() == x.size()) return true; else return false; } // Function to perform dfs void dfs(int node, int parent) { // If weighted string of the current // node contains unique characters if (uniqueChars(weight[node])) cnt += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code int main() { // Weights of the nodes weight[1] = "abc"; weight[2] = "aba"; weight[3] = "bcb"; weight[4] = "moh"; weight[5] = "aa"; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); dfs(1, 1); cout << cnt; return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static int cnt = 0; static Vector<Integer>[] graph = new Vector[100]; static String[] weight = new String[100]; // Function that returns true if the // String contains unique characters static boolean uniqueChars(char[] arr) { HashMap<Character, Integer> mp = new HashMap<Character, Integer>(); int n = arr.length; for (int i = 0; i < n; i++) if (mp.containsKey(arr[i])) { mp.put(arr[i], mp.get(arr[i]) + 1); } else { mp.put(arr[i], 1); } if (mp.size() == arr.length) return true; else return false; } // Function to perform dfs static void dfs(int node, int parent) { // If weighted String of the current // node contains unique characters if (uniqueChars(weight[node].toCharArray())) cnt += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code public static void main(String[] args) { for (int i = 0; i < 100; i++) graph[i] = new Vector<Integer>(); // Weights of the nodes weight[1] = "abc"; weight[2] = "aba"; weight[3] = "bcb"; weight[4] = "moh"; weight[5] = "aa"; // Edges of the tree graph[1].add(2); graph[2].add(3); graph[2].add(4); graph[1].add(5); dfs(1, 1); System.out.print(cnt); } } // This code is contributed by Rajput-Ji
Python3
# Python3 implementation of the approach cnt = 0 graph = [[] for i in range(100)] weight = [0] * 100 # Function that returns true if the # string contains unique characters def uniqueChars(x): mp = {} n = len(x) for i in range(n): if x[i] not in mp: mp[x[i]] = 0 mp[x[i]] += 1 if (len(mp) == len(x)): return True else: return False # Function to perform dfs def dfs(node, parent): global cnt, x # If weight of the current node # node contains unique characters if (uniqueChars(weight[node])): cnt += 1 for to in graph[node]: if (to == parent): continue dfs(to, node) # Driver code x = 5 # Weights of the node weight[1] = "abc" weight[2] = "aba" weight[3] = "bcb" weight[4] = "moh" weight[5] = "aa" # Edges of the tree graph[1].append(2) graph[2].append(3) graph[2].append(4) graph[1].append(5) dfs(1, 1) print(cnt) # This code is contributed by SHUBHAMSINGH10
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int cnt = 0; static List<int>[] graph = new List<int>[100]; static String[] weight = new String[100]; // Function that returns true if the // String contains unique characters static bool uniqueChars(char[] arr) { Dictionary<char, int> mp = new Dictionary<char, int>(); int n = arr.Length; for (int i = 0; i < n; i++) if (mp.ContainsKey(arr[i])) { mp[arr[i]] = mp[arr[i]] + 1; } else { mp.Add(arr[i], 1); } if (mp.Count == arr.Length) return true; else return false; } // Function to perform dfs static void dfs(int node, int parent) { // If weighted String of the current // node contains unique characters if (uniqueChars(weight[node].ToCharArray())) cnt += 1; foreach (int to in graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code public static void Main(String[] args) { for (int i = 0; i < 100; i++) graph[i] = new List<int>(); // Weights of the nodes weight[1] = "abc"; weight[2] = "aba"; weight[3] = "bcb"; weight[4] = "moh"; weight[5] = "aa"; // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); dfs(1, 1); Console.Write(cnt); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // JavaScript implementation of the approach let cnt = 0; let graph = new Array(); for (let i = 0; i < 100; i++) { graph.push([]) } let weight = new Array(100); // Function that returns true if the // string contains unique characters function uniqueChars(x) { let mp = new Map(); let n = x.length; for (let i = 0; i < n; i++) { if (mp.has(x[i])) { mp.set(x[i], mp.get(x[i]) + 1) } else { mp.set(x[i], 1) } } if (mp.size == x.length) return true; else return false; } // Function to perform dfs function dfs(node, parent) { // If weighted string of the current // node contains unique characters if (uniqueChars(weight[node])) cnt += 1; for (let to of graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code // Weights of the nodes weight[1] = "abc"; weight[2] = "aba"; weight[3] = "bcb"; weight[4] = "moh"; weight[5] = "aa"; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); dfs(1, 1); document.write(cnt); // This code is contributed by _saurabh_jaiswal </script>
Producción:
2
Análisis de Complejidad:
- Complejidad de tiempo: O(N*Len) donde Len es la longitud máxima de la string ponderada de un Node en el árbol dado.
En dfs, cada Node del árbol se procesa una vez y, por lo tanto, la complejidad debida a dfs es O(N) si hay un total de N Nodes en el árbol. Además, el procesamiento de cada Node implica atravesar la string ponderada de ese Node, lo que agrega una complejidad de O (Len) donde Len es la longitud de la string ponderada. Por lo tanto, la complejidad del tiempo es O(N*Len). - Espacio Auxiliar: O(1).
No se requiere ningún espacio adicional, por lo que la complejidad del espacio es constante.
Publicación traducida automáticamente
Artículo escrito por mohit kumar 29 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA