Dado un árbol binario que tiene Nodes positivos y negativos, la tarea es encontrar el nivel de suma máxima en él e imprimir la suma máxima.
Ejemplos:
Input: 4 / \ 2 -5 / \ / \ -1 3 -2 6 Output: 6 Sum of all nodes of the 1st level is 4. Sum of all nodes of the 2nd level is -3. Sum of all nodes of the 3rd level is 6. Hence, the maximum sum is 6. Input: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 Output: 17
Enfoque: encuentre el nivel máximo en el árbol binario dado y luego cree una array sum[] donde sum[i] almacenará la suma de los elementos en el nivel i .
Ahora, escriba una función recursiva que tome un Node del árbol y su nivel como argumento y actualice la suma para el nivel actual, luego haga llamadas recursivas para los niños con el nivel actualizado como uno más que el nivel actual (esto es porque los niños están en un nivel uno más que su padre). Finalmente, imprima el valor máximo de la array sum[] .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // A binary tree node has data, pointer to // the left child and the right child struct Node { int data; struct Node *left, *right; }; // Helper function that allocates a // new node with the given data and // NULL left and right pointers struct Node* newNode(int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Function to return the maximum // levels in the given tree int maxLevel(struct Node* root) { if (root == NULL) return 0; return (1 + max(maxLevel(root->left), maxLevel(root->right))); } // Function to find the maximum sum of a // level in the tree using recursion void maxLevelSum(struct Node* root, int max_level, int sum[], int current) { // Base case if (root == NULL) return; // Add current node's data to // its level's sum sum[current] += root->data; // Recursive call for the left child maxLevelSum(root->left, max_level, sum, current + 1); // Recursive call for the right child maxLevelSum(root->right, max_level, sum, current + 1); } // Function to find the maximum sum of a // level in the tree using recursion int maxLevelSum(struct Node* root) { // Maximum levels in the given tree int max_level = maxLevel(root); // To store the sum of every level int sum[max_level + 1] = { 0 }; // Recursive function call to // update the sum[] array maxLevelSum(root, max_level, sum, 1); // To store the maximum sum for a level int maxSum = 0; // For every level of the tree, update // the maximum sum of a level so far for (int i = 1; i <= max_level; i++) maxSum = max(maxSum, sum[i]); // Return the maximum sum return maxSum; } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(8); root->right->right->left = newNode(6); root->right->right->right = newNode(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ cout << maxLevelSum(root); return 0; }
Java
// Java implementation of the approach class GFG { // A binary tree node has data, pointer to // the left child and the right child static class Node { int data; Node left, right; }; // Helper function that allocates a // new node with the given data and // null left and right pointers static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function to return the maximum // levels in the given tree static int maxLevel( Node root) { if (root == null) return 0; return (1 + Math.max(maxLevel(root.left), maxLevel(root.right))); } // Function to find the maximum sum of a // level in the tree using recursion static void maxLevelSum(Node root, int max_level, int sum[], int current) { // Base case if (root == null) return; // Add current node's data to // its level's sum sum[current] += root.data; // Recursive call for the left child maxLevelSum(root.left, max_level, sum, current + 1); // Recursive call for the right child maxLevelSum(root.right, max_level, sum, current + 1); } // Function to find the maximum sum of a // level in the tree using recursion static int maxLevelSum( Node root) { // Maximum levels in the given tree int max_level = maxLevel(root); // To store the sum of every level int sum[] = new int[max_level + 1]; // Recursive function call to // update the sum[] array maxLevelSum(root, max_level, sum, 1); // To store the maximum sum for a level int maxSum = 0; // For every level of the tree, update // the maximum sum of a level so far for (int i = 1; i <= max_level; i++) maxSum = Math.max(maxSum, sum[i]); // Return the maximum sum return maxSum; } // Driver code public static void main(String args[]) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.right = newNode(8); root.right.right.left = newNode(6); root.right.right.right = newNode(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ System.out.println(maxLevelSum(root)); } } // This code is contributed by Arnab Kundu
Python3
# Python3 implementation of above algorithm # Utility class to create a node class Node: def __init__(self, key): self.val = key self.left = self.right = None # Helper function that allocates a # new node with the given data and # None left and right pointers def newNode(data): node = Node(0) node.data = data node.left = node.right = None return (node) # Function to return the maximum # levels in the given tree def maxLevel( root): if (root == None): return 0 return (1 + max(maxLevel(root.left), maxLevel(root.right))) sum = [] # Function to find the maximum sum of a # level in the tree using recursion def maxLevelSum_( root, max_level , current): global sum # Base case if (root == None): return # Add current node's data to # its level's sum sum[current] += root.data # Recursive call for the left child maxLevelSum_(root.left, max_level, current + 1) # Recursive call for the right child maxLevelSum_(root.right, max_level, current + 1) # Function to find the maximum sum of a # level in the tree using recursion def maxLevelSum( root): global sum # Maximum levels in the given tree max_level = maxLevel(root) # To store the sum of every level i = 0 sum = [None] * (max_level + 2) while(i <= max_level + 1): sum[i] = 0 i = i + 1 # Recursive function call to # update the sum[] array maxLevelSum_(root, max_level, 1) # To store the maximum sum for a level maxSum = 0 # For every level of the tree, update # the maximum sum of a level so far i = 1 while ( i <= max_level ): maxSum = max(maxSum, sum[i]) i = i + 1 # Return the maximum sum return maxSum # Driver code root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.right.right = newNode(8) root.right.right.left = newNode(6) root.right.right.right = newNode(7) # Constructed Binary tree is: # 1 # / \ # 2 3 # / \ \ # 4 5 8 # / \ # 6 7 print( maxLevelSum(root)) # This code is contributed by Arnab Kundu
C#
// C# implementation of the approach using System; class GFG { // A binary tree node has data, // pointer to the left child // and the right child public class Node { public int data; public Node left, right; }; // Helper function that allocates a // new node with the given data and // null left and right pointers static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function to return the maximum // levels in the given tree static int maxLevel( Node root) { if (root == null) return 0; return (1 + Math.Max(maxLevel(root.left), maxLevel(root.right))); } // Function to find the maximum sum of a // level in the tree using recursion static void maxLevelSum(Node root, int max_level, int []sum, int current) { // Base case if (root == null) return; // Add current node's data to // its level's sum sum[current] += root.data; // Recursive call for the left child maxLevelSum(root.left, max_level, sum, current + 1); // Recursive call for the right child maxLevelSum(root.right, max_level, sum, current + 1); } // Function to find the maximum sum of a // level in the tree using recursion static int maxLevelSum( Node root) { // Maximum levels in the given tree int max_level = maxLevel(root); // To store the sum of every level int []sum = new int[max_level + 1]; // Recursive function call to // update the sum[] array maxLevelSum(root, max_level, sum, 1); // To store the maximum sum for a level int maxSum = 0; // For every level of the tree, update // the maximum sum of a level so far for (int i = 1; i <= max_level; i++) maxSum = Math.Max(maxSum, sum[i]); // Return the maximum sum return maxSum; } // Driver code public static void Main(String []args) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.right = newNode(8); root.right.right.left = newNode(6); root.right.right.right = newNode(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ Console.WriteLine(maxLevelSum(root)); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the approach // A binary tree node has data, pointer to // the left child and the right child class Node { constructor() { this.data=0; this.left=this.right=null; } } // Helper function that allocates a // new node with the given data and // null left and right pointers function newNode(data) { let node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function to return the maximum // levels in the given tree function maxLevel(root) { if (root == null) return 0; return (1 + Math.max(maxLevel(root.left),maxLevel(root.right))); } // Function to find the maximum sum of a // level in the tree using recursion function maxLevelSum(root,max_level,sum,current) { // Base case if (root == null) return; // Add current node's data to // its level's sum sum[current] += root.data; // Recursive call for the left child maxLevelSum(root.left, max_level, sum, current + 1); // Recursive call for the right child maxLevelSum(root.right, max_level, sum, current + 1); } // Function to find the maximum sum of a // level in the tree using recursion function _maxLevelSum(root) { // Maximum levels in the given tree let max_level = maxLevel(root); // To store the sum of every level let sum = new Array(max_level + 1); for(let i=0;i<max_level+1;i++) sum[i]=0; // Recursive function call to // update the sum[] array maxLevelSum(root, max_level, sum, 1); // To store the maximum sum for a level let maxSum = 0; // For every level of the tree, update // the maximum sum of a level so far for (let i = 1; i <= max_level; i++) maxSum = Math.max(maxSum, sum[i]); // Return the maximum sum return maxSum; } // Driver code let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.right = newNode(8); root.right.right.left = newNode(6); root.right.right.right = newNode(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ document.write(_maxLevelSum(root)); // This code is contributed by avanitrachhadiya2155 </script>
Producción:
17