Dada una cuadrícula de tamaño H*W con todas las celdas inicialmente blancas. Dados N pares (i, j) en una array, para cada par, pinte la celda (i, j) con color negro. La tarea es determinar cuántos cuadrados de tamaño p×p de la cuadrícula contienen exactamente K celdas negras, después de pintar N celdas.
Ejemplos:
Input: H = 4, W = 5, N = 8, K = 4, p = 3 arr=[ (3, 1), (3, 2), (3, 4), (4, 4), (1, 5), (2, 3), (1, 1), (1, 4) ] Output: 4 Cells the are being painted are shown in the figure below: Here p = 3. There are six subrectangles of size 3*3. Two of them contain three black cells each, and the remaining four contain four black cells each.
Input: H = 1, W = 1, N = 1, K = 1, p = 1 arr=[ (1, 1) ] Output: 1
Acercarse:
- Lo primero que hay que observar es que una subcuadrícula p*p será diferente de la otra si sus puntos de partida son diferentes.
- Lo segundo es que si la celda está pintada de negro, contribuirá a p^2 subcuadrículas p*p diferentes.
- Por ejemplo, suponga que la celda [i, j] está pintada de negro. Entonces contribuirá con +1 adicional a todas las subcuadrículas que tengan un punto de partida
[i-p+1][j-p+1] a [i, j]. - Dado que puede haber como máximo N negros, para cada celda negra haga p*p iteraciones y actualice su contribución para cada p*p subcuadrículas.
- Mantenga un mapa para realizar un seguimiento de la respuesta para cada celda de la cuadrícula.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to check if a cell is safe or not bool isSafe(int x, int y, int h, int w, int p) { if (x >= 1 and x <= h) { if (y >= 1 and y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false; } // Function to print the number of p-sided squares // having k blacks void CountSquares(int h, int w, int n, int k, int p, vector<pair<int, int> > painted) { // Map to keep track for each cell that is // being affected by other blacks map<pair<int, int>, int> mp; for (int i = 0; i < painted.size(); ++i) { int x = painted[i].first; int y = painted[i].second; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for (int j = x - p + 1; j <= x; ++j) { for (int k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { pair<int, int> temp = { j, k }; // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp[temp] >= p * p) continue; else mp[temp]++; } } } } // Answer array to store the answer. int ans[p * p + 1]; memset(ans, 0, sizeof ans); for (auto& x : mp) { int cnt = x.second; ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks int sum = 0; for (int i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids int total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; cout << ans[k] << endl; return; } // Driver code int main() { int H = 4, W = 5, N = 8, K = 4, P = 3; vector<pair<int, int> > painted; // Initializing matrix painted.push_back({ 3, 1 }); painted.push_back({ 3, 2 }); painted.push_back({ 3, 4 }); painted.push_back({ 4, 4 }); painted.push_back({ 1, 5 }); painted.push_back({ 2, 3 }); painted.push_back({ 1, 1 }); painted.push_back({ 1, 4 }); CountSquares(H, W, N, K, P, painted); return 0; }
Java
// Java implementation of the above approach import java.util.*; import java.awt.Point; class GFG { // Function to check if a cell is safe or not static boolean isSafe(int x, int y, int h, int w, int p) { if (x >= 1 && x <= h) { if (y >= 1 && y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false; } // Function to print the number of p-sided squares // having k blacks static void CountSquares(int h, int w, int n, int K, int p, List<Point> painted) { // Map to keep track for each cell that is // being affected by other blacks HashMap<Point, Integer> mp = new HashMap<>(); for(int i = 0; i < painted.size(); ++i) { int x = painted.get(i).x; int y = painted.get(i).y; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for(int j = x - p + 1; j <= x; ++j) { for(int k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { Point temp = new Point(j, k); // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp.containsKey(temp)) { if (mp.get(temp) >= p * p) continue; else mp.put(temp, mp.get(temp) + 1); } else { mp.put(temp, 1); } } } } } // Answer array to store the answer. int[] ans = new int[p * p + 1]; for (Map.Entry<Point, Integer> x : mp.entrySet()) { int cnt = x.getValue(); ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks int sum = 0; for(int i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids int total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; System.out.println(ans[K]); return; } // Driver code public static void main(String[] args) { int H = 4, W = 5, N = 8, K = 4, P = 3; List<Point> painted = new ArrayList<Point>(); // Initializing matrix painted.add(new Point(3, 1)); painted.add(new Point(3, 2)); painted.add(new Point(3, 4)); painted.add(new Point(4, 4)); painted.add(new Point(1, 5)); painted.add(new Point(2, 3)); painted.add(new Point(1, 1)); painted.add(new Point(1, 4)); CountSquares(H, W, N, K, P, painted); } } // This code is contributed by divyesh072019
Python3
# Python3 implementation of the above approach # Function to check if a cell is safe or not def isSafe(x, y, h, w, p): if (x >= 1 and x <= h): if (y >= 1 and y <= w): if (x + p - 1 <= h): if (y + p - 1 <= w): return True return False # Function to print the number of p-sided squares # having k blacks def CountSquares(h, w, n, k, p, painted): # Map to keep track for each cell that is # being affected by other blacks mp = dict() for i in range(len(painted)): x = painted[i][0] y = painted[i][1] # For a particular row x and column y, # it will affect all the cells starting # from row = x-p+1 and column = y-p+1 # and ending at x, y # hence there will be total # of p^2 different cells for j in range(x - p + 1, x + 1): for k in range(y - p + 1, y + 1): # If the cell is safe if (isSafe(j, k, h, w, p)): temp = (j, k) # No need to increase the value # as there is no sense of pa # 2 blacks in one cell if (temp in mp.keys() and mp[temp] >= p * p): continue else: mp[temp] = mp.get(temp, 0) + 1 # Answer array to store the answer. ans = [0 for i in range(p * p + 1)] # memset(ans, 0, sizeof ans) for x in mp: cnt = mp[x] ans[cnt] += 1 # Sum variable to store Sum for all the p*p sub # grids painted with 1 black, 2 black, # 3 black, ..., p^2 blacks, # Since there is no meaning in painting p*p sub # grid with p^2+1 or more blacks Sum = 0 for i in range(1, p * p + 1): Sum = Sum + ans[i] # There will be total of # (h-p+1) * (w-p+1), p*p sub grids total = (h - p + 1) * (w - p + 1) ans[0] = total - Sum print(ans[k]) return # Driver code H = 4 W = 5 N = 8 K = 4 P = 3 painted = [] # Initializing matrix painted.append([ 3, 1 ]) painted.append([ 3, 2 ]) painted.append([ 3, 4 ]) painted.append([ 4, 4 ]) painted.append([ 1, 5 ]) painted.append([ 2, 3 ]) painted.append([ 1, 1 ]) painted.append([ 1, 4 ]) CountSquares(H, W, N, K, P, painted) # This code is contributed by Mohit Kumar
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG{ // Function to check if a cell is safe or not static bool isSafe(int x, int y, int h, int w, int p) { if (x >= 1 && x <= h) { if (y >= 1 && y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false; } // Function to print the number of p-sided squares // having k blacks static void CountSquares(int h, int w, int n, int K, int p, List<Tuple<int, int>> painted) { // Map to keep track for each cell that is // being affected by other blacks Dictionary<Tuple<int, int>, int> mp = new Dictionary<Tuple<int, int>, int>(); for(int i = 0; i < painted.Count; ++i) { int x = painted[i].Item1; int y = painted[i].Item2; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for(int j = x - p + 1; j <= x; ++j) { for(int k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { Tuple<int, int> temp = new Tuple<int, int>(j, k); // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp.ContainsKey(temp)) { if (mp[temp] >= p * p) continue; else mp[temp]++; } else { mp[temp] = 1; } } } } } // Answer array to store the answer. int[] ans = new int[p * p + 1]; foreach(KeyValuePair<Tuple<int, int>, int> x in mp) { int cnt = x.Value; ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks int sum = 0; for(int i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids int total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; Console.WriteLine(ans[K]); return; } // Driver Code static void Main() { int H = 4, W = 5, N = 8, K = 4, P = 3; List<Tuple<int, int>> painted = new List<Tuple<int, int>>(); // Initializing matrix painted.Add(new Tuple<int, int>(3, 1)); painted.Add(new Tuple<int, int>(3, 2)); painted.Add(new Tuple<int, int>(3, 4)); painted.Add(new Tuple<int, int>(4, 4)); painted.Add(new Tuple<int, int>(1, 5)); painted.Add(new Tuple<int, int>(2, 3)); painted.Add(new Tuple<int, int>(1, 1)); painted.Add(new Tuple<int, int>(1, 4)); CountSquares(H, W, N, K, P, painted); } } // This code is contributed by divyeshrabadiya07
Javascript
<script> // JavaScript implementation of the above approach // Function to check if a cell is safe or not function isSafe(x,y,h,w,p) { if (x >= 1 && x <= h) { if (y >= 1 && y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false; } // Function to print the number of p-sided squares // having k blacks function CountSquares(h,w,n,K,p,painted) { // Map to keep track for each cell that is // being affected by other blacks let mp = new Map(); for(let i = 0; i < painted.length; ++i) { let x = painted[i][0]; let y = painted[i][1]; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for(let j = x - p + 1; j <= x; ++j) { for(let k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { let temp = [j, k].toString(); // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp.has(temp)) { if (mp.get(temp) >= p * p) continue; else mp.set(temp, mp.get(temp) + 1); } else { mp.set(temp, 1); } } } } } // Answer array to store the answer. let ans = new Array(p * p + 1); for(let i=0;i<ans.length;i++) { ans[i]=0; } for (let [key, value] of mp.entries()) { let cnt = value; ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks let sum = 0; for(let i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids let total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; document.write(ans[K]+"<br>"); return; } // Driver code let H = 4, W = 5, N = 8, K = 4, P = 3; let painted = [] // Initializing matrix painted.push([ 3, 1 ]) painted.push([ 3, 2 ]) painted.push([ 3, 4 ]) painted.push([ 4, 4 ]) painted.push([ 1, 5 ]) painted.push([ 2, 3 ]) painted.push([ 1, 1 ]) painted.push([ 1, 4 ]) CountSquares(H, W, N, K, P, painted) // This code is contributed by unknown2108 </script>
Producción:
4
Complejidad del tiempo: O(N*p*p)