Imprima todas las rutas de la raíz a la hoja con el recuento máximo de Nodes pares

Dado un árbol binario , la tarea es imprimir todas las rutas posibles de raíz a hoja que tengan un número máximo de Nodes con valores pares.

Ejemplos:

Aporte: 

             2
            / \
           6   3
          / \   \
         4   7   11
        / \   \
       10  12   1

Salida: 
2 -> 6 -> 4 -> 10 
2 -> 6 -> 4 -> 12 
Explicación: 
Recuento de Nodes pares en la ruta 2 -> 6 -> 4 -> 10 = 4 
Recuento de Nodes pares en la ruta 2 -> 6 -> 4 -> 12 = 4 
Cantidad de Nodes pares en la ruta 2 -> 6 -> 7 -> 1 = 2 
Cantidad de Nodes pares en la ruta 2 -> 3 -> 11 = 1 
Por lo tanto, el las rutas que consisten en el recuento máximo de Nodes pares son {2 -> 6 -> 4 -> 10} y {2 -> 6 -> 4 -> 12}. 

 Aporte:  

             5
            / \
           6   3
          / \   \
         4   9   2

Salida: 5 -> 6 -> 4. 

Enfoque: El problema se puede resolver usando Preorder Traversal . La idea es atravesar el árbol binario dado y encontrar el máximo número posible de Nodes pares en un camino de raíz a hoja. Finalmente, recorra el árbol e imprima todas las rutas posibles de raíz a hoja que tengan el número máximo de Nodes pares. Siga los pasos a continuación para resolver el problema:

  • Inicialice dos variables, digamos cntMaxEven y cntEven para almacenar el recuento máximo de Nodes pares desde la raíz hasta un Node hoja y el recuento de Nodes pares desde la raíz hasta un Node hoja.
  • Atraviese el árbol y verifique las siguientes condiciones: 
    • Compruebe si el Node actual es un Node hoja y cntEven > cntMaxEven o no. Si se determina que es cierto, actualice cntMaxEven = cntEven .
    • De lo contrario, verifique si el Node actual es un Node par o no. Si se determina que es cierto, actualice cntEven += 1 .
  • Finalmente, recorra el árbol e imprima todas las rutas posibles de raíz a hoja con un recuento de Nodes pares igual a cntMaxEven .

C++

// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of the binary tree
struct Node {
    // Stores data
    int data;
 
    // Stores left child
    Node* left;
 
    // Stores right child
    Node* right;
 
    // Initialize a node
    // of binary tree
    Node(int val)
    {
 
        // Update data;
        data = val;
        left = right = NULL;
    }
};
 
// Function to find maximum count
// of even nodes in a path
int cntMaxEvenNodes(Node* root)
{
 
    // If the tree is an
    // empty binary tree.
    if (root == NULL) {
        return 0;
    }
 
    // Stores count of even nodes
    // in current subtree
    int cntEven = 0;
 
    // If root node is
    // an even node
    if (root->data % 2
        == 0) {
 
        // Update cntEven
        cntEven += 1;
    }
 
    // Stores count of even nodes
    // in left subtree.
    int X = cntMaxEvenNodes(
        root->left);
 
    // Stores count of even nodes
    // in right subtree.
    int Y = cntMaxEvenNodes(
        root->right);
 
    // cntEven
    cntEven += max(X, Y);
 
    return cntEven;
}
 
// Function to print paths having
// count of even nodes equal
// to maximum count of even nodes
void printPath(Node* root, int cntEven,
               int cntMaxEven,
               vector<int>& path)
{
    // If the tree is an
    // empty Binary Tree
    if (root == NULL) {
        return;
    }
 
    // If current node value is even
    if (root->data % 2 == 0) {
        path.push_back(
            root->data);
        cntEven += 1;
    }
 
    // If current node is
    // a leaf node
    if (root->left == NULL
        && root->right == NULL) {
 
        // If count of even nodes in
        // path is equal to cntMaxEven
        if (cntEven == cntMaxEven) {
 
            // Stores length of path
            int N = path.size();
 
            // Print path
            for (int i = 0; i < N - 1;
                 i++) {
                cout << path[i] << " -> ";
            }
            cout << path[N - 1] << endl;
        }
    }
 
    // Left subtree
    printPath(root->left, cntEven,
              cntMaxEven, path);
 
    // Right subtree
    printPath(root->right, cntEven,
              cntMaxEven, path);
 
    // If current node is even
    if (root->data % 2 == 0) {
        path.pop_back();
 
        // Update cntEven
        cntEven--;
    }
}
 
// Utility Function to print path
// from root to leaf node having
// maximum count of even nodes
void printMaxPath(Node* root)
{
    // Stores maximum count of even
    // nodes of a path in the tree
    int cntMaxEven;
 
    cntMaxEven
        = cntMaxEvenNodes(root);
 
    // Stores path of tree having
    // even nodes
    vector<int> path;
 
    printPath(root, 0, cntMaxEven,
              path);
}
 
// Driver code
int main()
{
    // Create tree.
    Node* root = NULL;
    root = new Node(2);
    root->left = new Node(6);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->left->right = new Node(7);
    root->right->right = new Node(11);
    root->left->left->left = new Node(10);
    root->left->left->right = new Node(12);
    root->left->right->right = new Node(1);
 
    printMaxPath(root);
}

Java

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
// Structure of the binary tree
static class Node
{
     
    // Stores data
    int data;
 
    // Stores left child
    Node left;
 
    // Stores right child
    Node right;
 
    // Initialize a node
    // of binary tree
    Node(int val)
    {
 
        // Update data;
        data = val;
        left = right = null;
    }
};
 
// Function to find maximum count
// of even nodes in a path
static int cntMaxEvenNodes(Node root)
{
     
    // If the tree is an
    // empty binary tree.
    if (root == null)
    {
        return 0;
    }
 
    // Stores count of even nodes
    // in current subtree
    int cntEven = 0;
 
    // If root node is
    // an even node
    if (root.data % 2 == 0)
    {
         
        // Update cntEven
        cntEven += 1;
    }
 
    // Stores count of even nodes
    // in left subtree.
    int X = cntMaxEvenNodes(root.left);
 
    // Stores count of even nodes
    // in right subtree.
    int Y = cntMaxEvenNodes(root.right);
 
    // cntEven
    cntEven += Math.max(X, Y);
 
    return cntEven;
}
 
// Function to print paths having
// count of even nodes equal
// to maximum count of even nodes
static void printPath(Node root, int cntEven,
                      int cntMaxEven,
                      Vector<Integer> path)
{
     
    // If the tree is an
    // empty Binary Tree
    if (root == null)
    {
        return;
    }
 
    // If current node value is even
    if (root.data % 2 == 0)
    {
        path.add(root.data);
        cntEven += 1;
    }
 
    // If current node is
    // a leaf node
    if (root.left == null &&
       root.right == null)
    {
         
        // If count of even nodes in
        // path is equal to cntMaxEven
        if (cntEven == cntMaxEven)
        {
             
            // Stores length of path
            int N = path.size();
 
            // Print path
            for(int i = 0; i < N - 1; i++)
            {
                System.out.print(path.get(i) + " -> ");
            }
            System.out.print(path.get(N - 1) + "\n");
        }
    }
 
    // Left subtree
    printPath(root.left, cntEven,
              cntMaxEven, path);
 
    // Right subtree
    printPath(root.right, cntEven,
              cntMaxEven, path);
 
    // If current node is even
    if (root.data % 2 == 0)
    {
        path.remove(path.size() - 1);
 
        // Update cntEven
        cntEven--;
    }
}
 
// Utility Function to print path
// from root to leaf node having
// maximum count of even nodes
static void printMaxPath(Node root)
{
     
    // Stores maximum count of even
    // nodes of a path in the tree
    int cntMaxEven;
 
    cntMaxEven = cntMaxEvenNodes(root);
 
    // Stores path of tree having
    // even nodes
    Vector<Integer> path = new Vector<>();
 
    printPath(root, 0, cntMaxEven,
              path);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Create tree.
    Node root = null;
    root = new Node(2);
    root.left = new Node(6);
    root.right = new Node(3);
    root.left.left = new Node(4);
    root.left.right = new Node(7);
    root.right.right = new Node(11);
    root.left.left.left = new Node(10);
    root.left.left.right = new Node(12);
    root.left.right.right = new Node(1);
 
    printMaxPath(root);
}
}
 
// This code is contributed by Amit Katiyar

Python3

# Python3 program to implement
# the above approach
 
# Structure of the binary tree
class newNode:
     
    def __init__(self, val):
         
        self.data = val
        self.left = None
        self.right = None
 
path = []
 
# Function to find maximum count
# of even nodes in a path
def cntMaxEvenNodes(root):
   
    # If the tree is an
    # empty binary tree.
    if (root == None):
        return 0
 
    # Stores count of even nodes
    # in current subtree
    cntEven = 0
 
    # If root node is
    # an even node
    if (root.data % 2 == 0):
         
        # Update cntEven
        cntEven += 1
 
    # Stores count of even nodes
    # in left subtree.
    X = cntMaxEvenNodes(root.left)
 
    # Stores count of even nodes
    # in right subtree.
    Y = cntMaxEvenNodes(root.right)
 
    # cntEven
    cntEven += max(X, Y)
 
    return cntEven
 
# Function to print paths having
# count of even nodes equal
# to maximum count of even nodes
def printPath(root, cntEven, cntMaxEven):
     
    global path
     
    # If the tree is an
    # empty Binary Tree
    if (root == None):
        return
 
    # If current node value is even
    if (root.data % 2 == 0):
        path.append(root.data)
        cntEven += 1
 
    # If current node is
    # a leaf node
    if (root.left == None and
       root.right == None):
         
        # If count of even nodes in
        # path is equal to cntMaxEven
        if (cntEven == cntMaxEven):
             
            # Stores length of path
            N = len(path)
 
            # Print path
            for i in range(N - 1):
                print(path[i], end = "->")
                 
            print(path[N - 1])
 
    # Left subtree
    printPath(root.left, cntEven, cntMaxEven)
 
    # Right subtree
    printPath(root.right, cntEven, cntMaxEven)
 
    # If current node is even
    if (root.data % 2 == 0):
        path.remove(path[len(path) - 1])
 
        # Update cntEven
        cntEven -= 1
 
# Utility Function to print path
# from root to leaf node having
# maximum count of even nodes
def printMaxPath(root):
     
    global path
     
    # Stores maximum count of even
    # nodes of a path in the tree
    cntMaxEven = cntMaxEvenNodes(root)
 
    printPath(root, 0, cntMaxEven)
 
# Driver code
if __name__ == '__main__':
     
    # Create tree.
    root = None
    root = newNode(2)
    root.left = newNode(6)
    root.right = newNode(3)
    root.left.left = newNode(4)
    root.left.right = newNode(7)
    root.right.right = newNode(11)
    root.left.left.left = newNode(10)
    root.left.left.right = newNode(12)
    root.left.right.right = newNode(1)
 
    printMaxPath(root)
 
# This code is contributed by bgangwar59

C#

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
     
// Structure of the binary tree
class Node
{   
  // Stores data
  public int data;
 
  // Stores left child
  public Node left;
 
  // Stores right child
  public Node right;
 
  // Initialize a node
  // of binary tree
  public Node(int val)
  {
    // Update data;
    data = val;
    left = right = null;
  }
};
 
// Function to find maximum count
// of even nodes in a path
static int cntMaxEvenNodes(Node root)
{   
  // If the tree is an
  // empty binary tree.
  if (root == null)
  {
    return 0;
  }
 
  // Stores count of even
  // nodes in current subtree
  int cntEven = 0;
 
  // If root node is
  // an even node
  if (root.data % 2 == 0)
  {
    // Update cntEven
    cntEven += 1;
  }
 
  // Stores count of even
  // nodes in left subtree.
  int X = cntMaxEvenNodes(root.left);
 
  // Stores count of even nodes
  // in right subtree.
  int Y = cntMaxEvenNodes(root.right);
 
  // cntEven
  cntEven += Math.Max(X, Y);
 
  return cntEven;
}
 
// Function to print paths having
// count of even nodes equal
// to maximum count of even nodes
static void printPath(Node root,
                      int cntEven,
                      int cntMaxEven,
                      List<int> path)
{   
  // If the tree is an
  // empty Binary Tree
  if (root == null)
  {
    return;
  }
 
  // If current node value
  // is even
  if (root.data % 2 == 0)
  {
    path.Add(root.data);
    cntEven += 1;
  }
 
  // If current node is
  // a leaf node
  if (root.left == null &&
      root.right == null)
  {
    // If count of even nodes in
    // path is equal to cntMaxEven
    if (cntEven == cntMaxEven)
    {
      // Stores length of path
      int N = path.Count;
 
      // Print path
      for(int i = 0;
              i < N - 1; i++)
      {
        Console.Write(path[i] +
                      " -> ");
      }
      Console.Write(path[N - 1] +
                    "\n");
    }
  }
 
  // Left subtree
  printPath(root.left, cntEven,
            cntMaxEven, path);
 
  // Right subtree
  printPath(root.right, cntEven,
            cntMaxEven, path);
 
  // If current node is even
  if (root.data % 2 == 0)
  {
    path.RemoveAt(path.Count - 1);
 
    // Update cntEven
    cntEven--;
  }
}
 
// Utility Function to print path
// from root to leaf node having
// maximum count of even nodes
static void printMaxPath(Node root)
{
  // Stores maximum count of even
  // nodes of a path in the tree
  int cntMaxEven;
 
  cntMaxEven = cntMaxEvenNodes(root);
 
  // Stores path of tree having
  // even nodes
  List<int> path = new List<int>();
 
  printPath(root, 0,
            cntMaxEven, path);
}
 
// Driver code
public static void Main(String[] args)
{
  // Create tree.
  Node root = null;
  root = new Node(2);
  root.left = new Node(6);
  root.right = new Node(3);
  root.left.left = new Node(4);
  root.left.right = new Node(7);
  root.right.right = new Node(11);
  root.left.left.left = new Node(10);
  root.left.left.right = new Node(12);
  root.left.right.right = new Node(1);
 
  printMaxPath(root);
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// Javascript program to implement
// the above approach
 
// Structure of the binary tree
class Node
{
    constructor(val)
    {
        this.left = null;
        this.right = null;
        this.data = val;
    }
}
 
// Function to find maximum count
// of even nodes in a path
function cntMaxEvenNodes(root)
{
     
    // If the tree is an
    // empty binary tree.
    if (root == null)
    {
        return 0;
    }
 
    // Stores count of even nodes
    // in current subtree
    let cntEven = 0;
 
    // If root node is
    // an even node
    if (root.data % 2 == 0)
    {
 
        // Update cntEven
        cntEven += 1;
    }
 
    // Stores count of even nodes
    // in left subtree.
    let X = cntMaxEvenNodes(root.left);
 
    // Stores count of even nodes
    // in right subtree.
    let Y = cntMaxEvenNodes(root.right);
 
    // cntEven
    cntEven += Math.max(X, Y);
 
    return cntEven;
}
 
// Function to print paths having
// count of even nodes equal
// to maximum count of even nodes
function printPath(root, cntEven,
                   cntMaxEven, path)
{
     
    // If the tree is an
    // empty Binary Tree
    if (root == null)
    {
        return;
    }
 
    // If current node value is even
    if (root.data % 2 == 0)
    {
        path.push(root.data);
        cntEven += 1;
    }
 
    // If current node is
    // a leaf node
    if (root.left == null &&
       root.right == null)
    {
         
        // If count of even nodes in
        // path is equal to cntMaxEven
        if (cntEven == cntMaxEven)
        {
 
            // Stores length of path
            let N = path.length;
 
            // Print path
            for(let i = 0; i < N - 1; i++)
            {
                document.write(path[i] + " -> ");
            }
            document.write(path[N - 1] + "</br>");
        }
    }
 
    // Left subtree
    printPath(root.left, cntEven,
              cntMaxEven, path);
 
    // Right subtree
    printPath(root.right, cntEven,
              cntMaxEven, path);
 
    // If current node is even
    if (root.data % 2 == 0)
    {
        path.pop();
 
        // Update cntEven
        cntEven--;
    }
}
 
// Utility Function to print path
// from root to leaf node having
// maximum count of even nodes
function printMaxPath(root)
{
     
    // Stores maximum count of even
    // nodes of a path in the tree
    let cntMaxEven;
 
    cntMaxEven = cntMaxEvenNodes(root);
 
    // Stores path of tree having
    // even nodes
    let path = [];
 
    printPath(root, 0, cntMaxEven, path);
}
 
// Driver code
 
// Create tree.
let root = null;
root = new Node(2);
root.left = new Node(6);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(7);
root.right.right = new Node(11);
root.left.left.left = new Node(10);
root.left.left.right = new Node(12);
root.left.right.right = new Node(1);
 
printMaxPath(root);
 
// This code is contributed by suresh07
 
</script>
Producción: 

2 -> 6 -> 4 -> 10
2 -> 6 -> 4 -> 12

 

Complejidad temporal: O(N), donde N es el número de Nodes del árbol binario. 
Espacio Auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por deepanshujindal634 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *