Dado un número palindrómico no negativo num que contiene n número de dígitos. El problema es aplicar como máximo dos operaciones de intercambio sobre el número num para que la resultante sea el número palindrómico más grande posible.
Ejemplos:
Input : 4697557964 Output : 9647557469 In, 4697557964 the highlighted digits were swapped to get the largest palindromic number 9647557469. Input : 54345 Output : 54345 No swapping of digits required.
Enfoque: Si n < 3, entonces num mismo es el número palindrómico más grande posible. De lo contrario, calcule mid = (n / 2) – 1. Luego cree una array rightMax[] de tamaño (mid + 1) . rightMax[i] contiene el índice del dígito mayor que está en el lado derecho de num[i] y también mayor que num[i] y 0 <= i <= mid. Si no existe tal dígito, entonces rightMax[i] = -1.
Ahora, recorra la array rightMax[] de i = 0 a m, y busque el primer elemento que tenga rightMax[i] != -1. Realice las operaciones swap(num[i], num[rightMax[i]]) y swap(num[n – i – 1], num[n – rightMax[i] – 1]) y rompa.
Implementación:
C++
// C++ implementation to form the largest palindromic // number using atmost two swaps #include <bits/stdc++.h> using namespace std; // function to form the largest palindromic // number using atmost two swaps void largestPalin(char num[], int n) { // if length of number is less than '3' // then no higher palindromic number // can be formed if (n <= 3) return; // find the index of last digit // in the 1st half of 'num' int mid = n / 2 - 1; int rightMax[mid + 1], right; // as only the first half of 'num[]' is // being considered, therefore // for the rightmost digit in the first half // of 'num[]', there will be no greater right digit rightMax[mid] = -1; // index of the greatest right digit till the // current index from the right direction right = mid; // traverse the array from second right element // in the first half of 'num[]' up to the // left element for (int i = mid - 1; i >= 0; i--) { // if 'num[i]' is less than the greatest digit // encountered so far if (num[i] < num[right]) rightMax[i] = right; else { // there is no greater right digit // for 'num[i]' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from left to right for (int i = 0; i <= mid; i++) { // if for the current digit, greater right digit exists // then swap it with its greater right digit and also // perform the required swap operation in the right halft // of 'num[]' to maintain palindromic property, then break if (rightMax[i] != -1) { // performing the required swap operations swap(num[i], num[rightMax[i]]); swap(num[n - i - 1], num[n - rightMax[i] - 1]); break; } } } // Driver program to test above int main() { char num[] = "4697557964"; int n = strlen(num); largestPalin(num, n); // required largest palindromic number cout << "Largest Palindrome: " << num; return 0; }
Java
// Java implementation to form the largest palindromic // number using atmost two swaps class GFG { // function to form the largest palindromic // number using atmost two swaps static void largestPalin(char num[], int n) { // if length of number is less than '3' // then no higher palindromic number // can be formed if (n <= 3) return; // find the index of last digit // in the 1st half of 'num' int mid = n / 2 - 1; int []rightMax = new int[mid + 1];int right; // as only the first half of 'num[]' is // being considered, therefore // for the rightmost digit in the first half // of 'num[]', there will be no greater right digit rightMax[mid] = -1; // index of the greatest right digit till the // current index from the right direction right = mid; // traverse the array from second right element // in the first half of 'num[]' up to the // left element for (int i = mid - 1; i >= 0; i--) { // if 'num[i]' is less than the greatest digit // encountered so far if (num[i] < num[right]) rightMax[i] = right; else { // there is no greater right digit // for 'num[i]' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from left to right for (int i = 0; i <= mid; i++) { // if for the current digit, greater right digit exists // then swap it with its greater right digit and also // perform the required swap operation in the right halft // of 'num[]' to maintain palindromic property, then break if (rightMax[i] != -1) { // performing the required swap operations swap(num,i, rightMax[i]); swap(num,n - i - 1, n - rightMax[i] - 1); break; } } } static char[] swap(char []arr, int i, int j) { char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code public static void main(String[] args) { char num[] = "4697557964".toCharArray(); int n = num.length; largestPalin(num, n); // required largest palindromic number System.out.println("Largest Palindrome: " + String.valueOf(num)); } } // This code has been contributed by 29AjayKumar
Python 3
# Python implementation to form the largest # palindromic number using atmost two swaps # function to form the largest palindromic # number using atmost two swaps def largestPalin(num, n): # if length of number is less than '3' # then no higher palindromic number # can be formed if n <= 3: return # find the index of last digit # in the 1st half of 'num' mid = n // 2 + 1 rightMax = [0] * (mid + 1) # as only the first half of 'num[]' is # being considered, therefore # for the rightmost digit in the first half # of 'num[]', there will be no greater right digit rightMax[mid] = -1 # index of the greatest right digit till the # current index from the right direction right = mid # traverse the array from second right element # in the first half of 'num[]' up to the # left element for i in range(mid-1, -1, -1): # if 'num[i]' is less than the greatest digit # encountered so far if num[i] < num[right]: rightMax[i] = right else: # there is no greater right digit # for 'num[i]' rightMax[i] = -1 # update 'right' index right = i # traverse the 'rightMax[]' array from left to right for i in range(mid + 1): # if for the current digit, greater right digit exists # then swap it with its greater right digit and also # perform the required swap operation in the right halft # of 'num[]' to maintain palindromic property, then break if rightMax[i] != -1: # performing the required swap operations num[i], num[rightMax[i]] = num[rightMax[i]], num[i] num[n-i-1], num[n - rightMax[i] - 1] = num[n - rightMax[i] - 1], num[n - i - 1] break # Driver Code if __name__ == "__main__": num = "4697557964" n = len(num) # Required as string object do not # support item assignment num = list(num) largestPalin(num, n) # making string again from list num = ''.join(num) print("Largest Palindrome: ",num) # This code is contributed by # sanjeev2552
C#
// C# implementation to form the largest // palindromic number using atmost two swaps using System; class GFG { // function to form the largest palindromic // number using atmost two swaps static void largestPalin(char []num, int n) { // if length of number is less than '3' // then no higher palindromic number // can be formed if (n <= 3) return; // find the index of last digit // in the 1st half of 'num' int mid = n / 2 - 1; int []rightMax = new int[mid + 1]; int right; // as only the first half of 'num[]' is // being considered, therefore // for the rightmost digit in the first half // of 'num[]', there will be no greater right digit rightMax[mid] = -1; // index of the greatest right digit till the // current index from the right direction right = mid; // traverse the array from second right element // in the first half of 'num[]' up to the // left element for (int i = mid - 1; i >= 0; i--) { // if 'num[i]' is less than the greatest // digit encountered so far if (num[i] < num[right]) rightMax[i] = right; else { // there is no greater right digit // for 'num[i]' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array // from left to right for (int i = 0; i <= mid; i++) { // if for the current digit, greater right // digit exists then swap it with its greater // right digit and also perform the required // swap operation in the right half of 'num[]' // to maintain palindromic property, then break if (rightMax[i] != -1) { // performing the required swap operations swap(num, i, rightMax[i]); swap(num, n - i - 1, n - rightMax[i] - 1); break; } } } static char[] swap(char []arr, int i, int j) { char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code public static void Main(String[] args) { char []num = "4697557964".ToCharArray(); int n = num.Length; largestPalin(num, n); // required largest palindromic number Console.WriteLine("Largest Palindrome: " + String.Join("", num)); } } // This code contributed by Rajput-Ji
Javascript
<script> // JavaScript implementation to form the largest palindromic // number using atmost two swaps // function to form the largest palindromic // number using atmost two swaps function largestPalin(num,n) { // if length of number is less than '3' // then no higher palindromic number // can be formed if (n <= 3) return; // find the index of last digit // in the 1st half of 'num' let mid = Math.floor(n / 2) - 1; let rightMax = new Array(mid + 1); let right; // as only the first half of 'num[]' is // being considered, therefore // for the rightmost digit in the first half // of 'num[]', there will be no greater right digit rightMax[mid] = -1; // index of the greatest right digit till the // current index from the right direction right = mid; // traverse the array from second right element // in the first half of 'num[]' up to the // left element for (let i = mid - 1; i >= 0; i--) { // if 'num[i]' is less than the greatest digit // encountered so far if (num[i] < num[right]) rightMax[i] = right; else { // there is no greater right digit // for 'num[i]' rightMax[i] = -1; // update 'right' index right = i; } } // traverse the 'rightMax[]' array from left to right for (let i = 0; i <= mid; i++) { // if for the current digit, greater right digit exists // then swap it with its greater right digit and also // perform the required swap operation in the right halft // of 'num[]' to maintain palindromic property, then break if (rightMax[i] != -1) { // performing the required swap operations swap(num,i, rightMax[i]); swap(num,n - i - 1, n - rightMax[i] - 1); break; } } } function swap(arr,i,j) { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code let num = "4697557964".split(""); let n = num.length; largestPalin(num, n); // required largest palindromic number document.write("Largest Palindrome: " + (num).join("")); // This code is contributed by rag2127 </script>
Largest Palindrome: 9647557469
Complejidad temporal: O(n).
Espacio Auxiliar: O(n).
Publicación traducida automáticamente
Artículo escrito por ayushjauhari14 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA