Dada una array arr[] de longitud N y un entero K . En cada operación, se puede seleccionar cualquier elemento (digamos arr[i] ) de la array y se puede cambiar a arr[i] + 1 o arr[i] – 1 . La tarea es encontrar el número mínimo de operaciones requeridas para realizar en la array de modo que cada valor de la array módulo K permanezca igual.
Ejemplos:
Entrada: arr[] = {4, 5, 8, 3, 12}, k =5
Salida: 4
Explicación:
Operación 1: { 3, 5, 8, 3, 12 }, disminuir 4 en el índice 0 en 1.
Operación 2: { 3, 4, 8, 3, 12 }, disminuir 5 en el índice 1 en 1.
Operación 3: { 3, 3, 8, 3, 12 }, disminuir 4 en el índice 1 en 1.
Operación 4: { 3 , 3, 8, 3, 13 }, aumente 12 en el índice 4 en 1.
El módulo de cada número es igual a 3 y los pasos mínimos requeridos fueron 4.Entrada: arr[] = {2, 35, 48, 23, 52}, k =3
Salida: 2
Explicación:
El número mínimo de pasos necesarios para igualar el módulo de cada número es 2.
Planteamiento: La idea es utilizar Hashing que lleva la cuenta de cada módulo que se ha obtenido.
- Ahora itere para cada valor de i, en el rango 0 <= i < k, y encuentre el número de operaciones requeridas para igualar el módulo de todos los números.
- Si es menor que el valor obtenido que el valor almacenado actualmente, actualícelo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum operations // required to make the modulo of each // element of the array equal to each other int Find_min(set<int>& diff_mod, map<int, int> count_mod, int k) { // Variable to store minimum // operation required int min_oprn = INT_MAX; // To store operation required to // make all modulo equal int oprn = 0; // Iterating through all // possible modulo value for (int x = 0; x < k; x++) { oprn = 0; // Iterating through all different // modulo obtained so far for (auto w : diff_mod) { // Calculating oprn required // to make all modulos equal // to x if (w != x) { if (w == 0) { // Checking the operations // that will cost less oprn += min(x, k - x) * count_mod[w]; } else { // Check operation that // will cost less oprn += min( abs(x - w), k + x - w) * count_mod[w]; } } } // Update the minimum // number of operations if (oprn < min_oprn) min_oprn = oprn; } // Returning the answer return min_oprn; } // Function to store different modulos int Cal_min(int arr[], int n, int k) { // Set to store all // different modulo set<int> diff_mod; // Map to store count // of all different modulo // obtained map<int, int> count_mod; // Storing all different // modulo count for (int i = 0; i < n; i++) { // Insert into the set diff_mod.insert(arr[i] % k); // Increment count count_mod[arr[i] % k]++; } // Function call to return value of // min oprn required return Find_min(diff_mod, count_mod, k); } // Driver Code int main() { int arr[] = { 2, 35, 48, 23, 52 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; cout << Cal_min(arr, n, k); return 0; }
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the minimum operations // required to make the modulo of each // element of the array equal to each other static int Find_min(HashSet<Integer> diff_mod, HashMap<Integer, Integer> count_mod, int k) { // Variable to store minimum // operation required int min_oprn = Integer.MAX_VALUE; // To store operation required to // make all modulo equal int oprn = 0; // Iterating through all // possible modulo value for(int x = 0; x < k; x++) { oprn = 0; // Iterating through all different // modulo obtained so far for(int w : diff_mod) { // Calculating oprn required // to make all modulos equal // to x if (w != x) { if (w == 0) { // Checking the operations // that will cost less oprn += Math.min(x, k - x) * count_mod.get(w); } else { // Check operation that // will cost less oprn += Math.min(Math.abs(x - w), k + x - w) * count_mod.get(w); } } } // Update the minimum // number of operations if (oprn < min_oprn) min_oprn = oprn; } // Returning the answer return min_oprn; } // Function to store different modulos static int Cal_min(int arr[], int n, int k) { // Set to store all // different modulo HashSet<Integer> diff_mod = new HashSet<>(); // Map to store count // of all different modulo // obtained HashMap<Integer, Integer> count_mod = new HashMap<>(); // Storing all different // modulo count for(int i = 0; i < n; i++) { // Insert into the set diff_mod.add(arr[i] % k); // Increment count count_mod.put(arr[i] % k, count_mod.getOrDefault(arr[i] % k, 0) + 1); } // Function call to return value of // min oprn required return Find_min(diff_mod, count_mod, k); } // Driver Code public static void main(String[] args) { int arr[] = { 2, 35, 48, 23, 52 }; int n = arr.length; int k = 3; System.out.print(Cal_min(arr, n, k)); } } // This code is contributed by jrishabh99
Python3
# Python3 program for # the above approach import sys from collections import defaultdict # Function to find the minimum operations # required to make the modulo of each # element of the array equal to each other def Find_min(diff_mod, count_mod, k): # Variable to store minimum # operation required min_oprn = sys.maxsize # To store operation required to # make all modulo equal oprn = 0 # Iterating through all # possible modulo value for x in range (k): oprn = 0 # Iterating through all different # modulo obtained so far for w in diff_mod: # Calculating oprn required # to make all modulos equal # to x if (w != x): if (w == 0): # Checking the operations # that will cost less oprn += (min(x, k - x) * count_mod[w]) else: # Check operation that # will cost less oprn += (min(abs(x - w), k + x - w) * count_mod[w]) # Update the minimum # number of operations if (oprn < min_oprn): min_oprn = oprn # Returning the answer return min_oprn # Function to store different modulos def Cal_min(arr, n, k): # Set to store all # different modulo diff_mod = set([]) # Map to store count # of all different modulo # obtained count_mod = defaultdict (int) # Storing all different # modulo count for i in range (n): # Insert into the set diff_mod.add(arr[i] % k) # Increment count count_mod[arr[i] % k] += 1 # Function call to return value of # min oprn required return Find_min(diff_mod, count_mod, k) # Driver Code if __name__ == "__main__": arr = [2, 35, 48, 23, 52] n = len(arr) k = 3 print( Cal_min(arr, n, k)) # This code is contributed by Chitranayal
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the minimum operations // required to make the modulo of each // element of the array equal to each other static int Find_min(HashSet<int> diff_mod, Dictionary<int, int> count_mod, int k) { // Variable to store minimum // operation required int min_oprn = int.MaxValue; // To store operation required to // make all modulo equal int oprn = 0; // Iterating through all // possible modulo value for(int x = 0; x < k; x++) { oprn = 0; // Iterating through all different // modulo obtained so far foreach(int w in diff_mod) { // Calculating oprn required // to make all modulos equal // to x if (w != x) { if (w == 0) { // Checking the operations // that will cost less oprn += Math.Min(x, k - x) * count_mod[w]; } else { // Check operation that // will cost less oprn += Math.Min(Math.Abs(x - w), k + x - w) * count_mod[w]; } } } // Update the minimum // number of operations if (oprn < min_oprn) min_oprn = oprn; } // Returning the answer return min_oprn; } // Function to store different modulos static int Cal_min(int []arr, int n, int k) { // Set to store all // different modulo HashSet<int> diff_mod = new HashSet<int>(); // Map to store count // of all different modulo // obtained Dictionary<int, int> count_mod = new Dictionary<int, int>(); // Storing all different // modulo count for(int i = 0; i < n; i++) { // Insert into the set diff_mod.Add(arr[i] % k); // Increment count if(count_mod.ContainsKey((arr[i] % k))) count_mod[arr[i] % k] = count_mod[(arr[i] % k)]+1; else count_mod.Add(arr[i] % k, 1); } // Function call to return value of // min oprn required return Find_min(diff_mod, count_mod, k); } // Driver Code public static void Main(String[] args) { int []arr = { 2, 35, 48, 23, 52 }; int n = arr.Length; int k = 3; Console.Write(Cal_min(arr, n, k)); } } // This code is contributed by Amit Katiyar
Javascript
<script> // Javascript program for the above approach // Function to find the minimum operations // required to make the modulo of each // element of the array equal to each other function Find_min(diff_mod, count_mod, k) { // Variable to store minimum // operation required let min_oprn = Number.MAX_VALUE; // To store operation required to // make all modulo equal let oprn = 0; // Iterating through all // possible modulo value for(let x = 0; x < k; x++) { oprn = 0; // Iterating through all different // modulo obtained so far for(let w of diff_mod.values()) { // Calculating oprn required // to make all modulos equal // to x if (w != x) { if (w == 0) { // Checking the operations // that will cost less oprn += Math.min(x, k - x) * count_mod.get(w); } else { // Check operation that // will cost less oprn += Math.min(Math.abs(x - w), k + x - w) * count_mod.get(w); } } } // Update the minimum // number of operations if (oprn < min_oprn) min_oprn = oprn; } // Returning the answer return min_oprn; } // Function to store different modulos function Cal_min(arr, n, k) { // Set to store all // different modulo let diff_mod = new Set(); // Map to store count // of all different modulo // obtained let count_mod = new Map(); // Storing all different // modulo count for(let i = 0; i < n; i++) { // Insert into the set diff_mod.add(arr[i] % k); // Increment count // Increment count if(count_mod.has((arr[i] % k))) count_mod.set(arr[i] % k, count_mod.get(arr[i] % k) + 1); else count_mod.set(arr[i] % k, 1); } // Function call to return value of // min oprn required return Find_min(diff_mod, count_mod, k); } // Driver Code let arr = [ 2, 35, 48, 23, 52 ]; let n = arr.length; let k = 3; document.write(Cal_min(arr, n, k)); // This code is contributed by avanitrachhadiya2155 </script>
2
Complejidad de tiempo: O(N*K)