Verifique si dos árboles son un espejo entre sí usando el recorrido de orden de nivel

Dados dos árboles binarios, la tarea es verificar si los dos árboles binarios son un espejo entre sí o no. 
Espejo de un árbol binario: Espejo de un árbol binario T es otro árbol binario M(T) con hijos izquierdo y derecho de todos los Nodes que no son hojas intercambiados.
 

Los árboles en la figura de arriba son espejos entre sí.
 

Ya se ha discutido una solución recursiva y un método iterativo que usa el recorrido en orden para verificar si los dos árboles binarios son un espejo entre sí o no. En esta publicación, se ha discutido una solución que utiliza el recorrido de orden de nivel .
La idea es utilizar una cola en la que estén presentes juntos dos Nodes de ambos árboles cuya igualdad debe comprobarse. En cada paso del recorrido del orden de niveles, obtenga dos Nodes de la cola, verifique su igualdad y luego inserte los siguientes dos Nodes secundarios de estos Nodes que deben verificarse para verificar la igualdad. Durante el paso de inserción, se insertan el primer hijo izquierdo del primer Node del árbol y el hijo derecho del segundo Node del árbol. Después de que se inserten el hijo derecho del primer Node del árbol y el hijo izquierdo del segundo Node del árbol. Si en cualquier etapa un Node es NULO y el otro no, entonces ambos árboles no son un espejo el uno del otro.
A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation to check whether the two
// binary trees are mirrors of each other or not
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a node in binary tree
struct Node {
    int data;
    struct Node *left, *right;
};
 
// Function to create and return
// a new node for a binary tree
struct Node* newNode(int data)
{
    struct Node* temp = new Node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Function to check whether the two binary trees
// are mirrors of each other or not
string areMirrors(Node* a, Node* b)
{
    // If both are NULL, then are mirror.
    if (a == NULL && b == NULL)
        return "Yes";
 
    // If only one is NULL, then not
    // mirror.
    if (a == NULL || b == NULL)
        return "No";
 
    queue<Node*> q;
 
    // Push root of both trees in queue.
    q.push(a);
    q.push(b);
 
    while (!q.empty()) {
 
        // Pop two elements of queue, to
        // get two nodes and check if they
        // are symmetric.
        a = q.front();
        q.pop();
 
        b = q.front();
        q.pop();
 
        // If data value of both nodes is
        // not same, then not mirror.
        if (a->data != b->data)
            return "No";
 
        // Push left child of first tree node
        // and right child of second tree node
        // into queue if both are not NULL.
        if (a->left && b->right) {
            q.push(a->left);
            q.push(b->right);
        }
 
        // If any one of the nodes is NULL and
        // other is not NULL, then not mirror.
        else if (a->left || b->right)
            return "No";
 
        // Push right child of first tree node
        // and left child of second tree node
        // into queue if both are not NULL.
        if (a->right && b->left) {
            q.push(a->right);
            q.push(b->left);
        }
 
        // If any one of the nodes is NULL and
        // other is not NULL, then not mirror.
        else if (a->right || b->left)
            return "No";
    }
 
    return "Yes";
}
// Driver Code
int main()
{
    // 1st binary tree formation
    /*
            1
           / \
          3   2
             / \
            5   4
        */
    Node* root1 = newNode(1);
    root1->left = newNode(3);
    root1->right = newNode(2);
    root1->right->left = newNode(5);
    root1->right->right = newNode(4);
 
    // 2nd binary tree formation
    /*
            1
           / \
          2   3
         / \
        4   5
        */
    Node* root2 = newNode(1);
    root2->left = newNode(2);
    root2->right = newNode(3);
    root2->left->left = newNode(4);
    root2->left->right = newNode(5);
 
    cout << areMirrors(root1, root2);
    return 0;
}

Java

// Java implementation to check whether the two
// binary trees are mirrors of each other or not
import java.util.*;
 
class GFG
{
 
// Structure of a node in binary tree
static class Node
{
    int data;
    Node left, right;
};
 
// Function to create and return
// a new node for a binary tree
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Function to check whether the two binary trees
// are mirrors of each other or not
static String areMirrors(Node a, Node b)
{
    // If both are null, then are mirror.
    if (a == null && b == null)
        return "Yes";
 
    // If only one is null, then not
    // mirror.
    if (a == null || b == null)
        return "No";
 
    Queue<Node> q = new LinkedList<Node>();
 
    // Push root of both trees in queue.
    q.add(a);
    q.add(b);
 
    while (q.size() > 0)
    {
 
        // remove two elements of queue, to
        // get two nodes and check if they
        // are symmetric.
        a = q.peek();
        q.remove();
 
        b = q.peek();
        q.remove();
 
        // If data value of both nodes is
        // not same, then not mirror.
        if (a.data != b.data)
            return "No";
 
        // Push left child of first tree node
        // and right child of second tree node
        // into queue if both are not null.
        if (a.left != null && b.right != null)
        {
            q.add(a.left);
            q.add(b.right);
        }
 
        // If any one of the nodes is null and
        // other is not null, then not mirror.
        else if (a.left != null || b.right != null)
            return "No";
 
        // Push right child of first tree node
        // and left child of second tree node
        // into queue if both are not null.
        if (a.right != null && b.left != null)
        {
            q.add(a.right);
            q.add(b.left);
        }
 
        //If any one of the nodes is null and
        // other is not null, then not mirror.
        else if (a.right != null || b.left != null)
            return "No";
    }
 
    return "Yes";
}
 
// Driver Code
public static void main(String args[])
{
    // 1st binary tree formation
    /*
            1
        / \
        3 2
            / \
            5 4
        */
    Node root1 = newNode(1);
    root1.left = newNode(3);
    root1.right = newNode(2);
    root1.right.left = newNode(5);
    root1.right.right = newNode(4);
 
    // 2nd binary tree formation
    /*
            1
        / \
        2 3
        / \
        4 5
        */
    Node root2 = newNode(1);
    root2.left = newNode(2);
    root2.right = newNode(3);
    root2.left.left = newNode(4);
    root2.left.right = newNode(5);
 
    System.out.print(areMirrors(root1, root2));
}
}
 
// This code is contributed by Arnab Kundu

Python3

# Python3 implementation to check whether the two
# binary trees are mirrors of each other or not
 
# Structure of a node in binary tree
class Node: 
     
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
     
# Function to check whether the two binary
# trees are mirrors of each other or not
def areMirrors(a, b):
  
    # If both are NULL, then are mirror.
    if a == None and b == None:
        return "Yes"
 
    # If only one is NULL, then not mirror.
    if a == None or b == None:
        return "No"
 
    q = []
 
    # append root of both trees in queue.
    q.append(a)
    q.append(b)
 
    while len(q) > 0: 
 
        # Pop two elements of queue,
        # to get two nodes and check
        # if they are symmetric.
        a = q.pop(0)
        b = q.pop(0)
 
        # If data value of both nodes is
        # not same, then not mirror.
        if a.data != b.data:
            return "No"
 
        # append left child of first tree node
        # and right child of second tree node
        # into queue if both are not NULL.
        if a.left and b.right: 
            q.append(a.left)
            q.append(b.right)
 
        # If any one of the nodes is NULL and
        # other is not NULL, then not mirror.
        elif a.left or b.right:
            return "No"
 
        # Append right child of first tree node
        # and left child of second tree node
        # into queue if both are not NULL.
        if a.right and b.left: 
            q.append(a.right)
            q.append(b.left)
 
        # If any one of the nodes is NULL and
        # other is not NULL, then not mirror.
        elif a.right or b.left:
            return "No"
      
    return "Yes"
  
# Driver Code
if __name__ == "__main__":
  
    # 1st binary tree formation
    root1 = Node(1)
    root1.left = Node(3)
    root1.right = Node(2)
    root1.right.left = Node(5)
    root1.right.right = Node(4)
 
    # 2nd binary tree formation
    root2 = Node(1)
    root2.left = Node(2)
    root2.right = Node(3)
    root2.left.left = Node(4)
    root2.left.right = Node(5)
 
    print(areMirrors(root1, root2))
 
# This code is contributed by Rituraj Jain

C#

// C# implementation to check whether the two
// binary trees are mirrors of each other or not
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Structure of a node in binary tree
public class Node
{
    public int data;
    public Node left, right;
};
 
// Function to create and return
// a new node for a binary tree
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Function to check whether the two binary trees
// are mirrors of each other or not
static String areMirrors(Node a, Node b)
{
    // If both are null, then are mirror.
    if (a == null && b == null)
        return "Yes";
 
    // If only one is null, then not
    // mirror.
    if (a == null || b == null)
        return "No";
 
    Queue<Node> q = new Queue<Node>();
 
    // Push root of both trees in queue.
    q.Enqueue(a);
    q.Enqueue(b);
 
    while (q.Count > 0)
    {
 
        // remove two elements of queue, to
        // get two nodes and check if they
        // are symmetric.
        a = q.Peek();
        q.Dequeue();
 
        b = q.Peek();
        q.Dequeue();
 
        // If data value of both nodes is
        // not same, then not mirror.
        if (a.data != b.data)
            return "No";
 
        // Push left child of first tree node
        // and right child of second tree node
        // into queue if both are not null.
        if (a.left != null && b.right != null)
        {
            q.Enqueue(a.left);
            q.Enqueue(b.right);
        }
 
        // If any one of the nodes is null and
        // other is not null, then not mirror.
        else if (a.left != null || b.right != null)
            return "No";
 
        // Push right child of first tree node
        // and left child of second tree node
        // into queue if both are not null.
        if (a.right != null && b.left != null)
        {
            q.Enqueue(a.right);
            q.Enqueue(b.left);
        }
 
        //If any one of the nodes is null and
        // other is not null, then not mirror.
        else if (a.right != null || b.left != null)
            return "No";
    }
    return "Yes";
}
 
// Driver Code
public static void Main(String []args)
{
    // 1st binary tree formation
    /*
            1
        / \
        3 2
            / \
            5 4
        */
    Node root1 = newNode(1);
    root1.left = newNode(3);
    root1.right = newNode(2);
    root1.right.left = newNode(5);
    root1.right.right = newNode(4);
 
    // 2nd binary tree formation
    /*
            1
        / \
        2 3
        / \
        4 5
        */
    Node root2 = newNode(1);
    root2.left = newNode(2);
    root2.right = newNode(3);
    root2.left.left = newNode(4);
    root2.left.right = newNode(5);
 
    Console.Write(areMirrors(root1, root2));
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// JavaScript implementation to check whether the two
// binary trees are mirrors of each other or not
 
// Structure of a node in binary tree
class Node
{
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Function to create and return
// a new node for a binary tree
function newNode(data)
{
    var temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Function to check whether the two binary trees
// are mirrors of each other or not
function areMirrors(a, b)
{
    // If both are null, then are mirror.
    if (a == null && b == null)
        return "Yes";
 
    // If only one is null, then not
    // mirror.
    if (a == null || b == null)
        return "No";
 
    var q = [];
 
    // Push root of both trees in queue.
    q.push(a);
    q.push(b);
 
    while (q.length > 0)
    {
 
        // remove two elements of queue, to
        // get two nodes and check if they
        // are symmetric.
        a = q[0];
        q.shift();
 
        b = q[0];
        q.shift();
 
        // If data value of both nodes is
        // not same, then not mirror.
        if (a.data != b.data)
            return "No";
 
        // Push left child of first tree node
        // and right child of second tree node
        // into queue if both are not null.
        if (a.left != null && b.right != null)
        {
            q.push(a.left);
            q.push(b.right);
        }
 
        // If any one of the nodes is null and
        // other is not null, then not mirror.
        else if (a.left != null || b.right != null)
            return "No";
 
        // Push right child of first tree node
        // and left child of second tree node
        // into queue if both are not null.
        if (a.right != null && b.left != null)
        {
            q.push(a.right);
            q.push(b.left);
        }
 
        //If any one of the nodes is null and
        // other is not null, then not mirror.
        else if (a.right != null || b.left != null)
            return "No";
    }
    return "Yes";
}
 
// Driver Code
// 1st binary tree formation
/*
        1
    / \
    3 2
        / \
        5 4
    */
var root1 = newNode(1);
root1.left = newNode(3);
root1.right = newNode(2);
root1.right.left = newNode(5);
root1.right.right = newNode(4);
// 2nd binary tree formation
/*
        1
    / \
    2 3
    / \
    4 5
    */
var root2 = newNode(1);
root2.left = newNode(2);
root2.right = newNode(3);
root2.left.left = newNode(4);
root2.left.right = newNode(5);
document.write(areMirrors(root1, root2));
 
 
</script>
Producción: 

Yes

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)  

Publicación traducida automáticamente

Artículo escrito por nik1996 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *