Dado un entero n, encuentre la diferencia absoluta entre la suma de los cuadrados de los primeros n números naturales y el cuadrado de la suma de los primeros n números naturales.
Ejemplos:
Input : n = 3 Output : 22.0 Sum of first three numbers is 3 + 2 + 1 = 6 Square of the sum = 36 Sum of squares of first three is 9 + 4 + 1 = 14 Absolute difference = 36 - 14 = 22 Input : n = 10 Output : 2640.0
Preguntado en : biwhiz Company
Enfoque:
1. Encuentra la suma de los cuadrados de los primeros n números naturales.
2. Encuentra la suma de los primeros n números y elévala al cuadrado.
3. Encuentra la diferencia absoluta entre ambas sumas e imprímela.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the difference // between sum of the squares of the // first n natural numbers and square // of sum of first n natural number #include <bits/stdc++.h> using namespace std; int Square_Diff(int n){ int l, k, m; // Sum of the squares of the // first n natural numbers is l = (n * (n + 1) * (2 * n + 1)) / 6; // Sum of n naturals numbers k = (n * (n + 1)) / 2; // Square of k k = k * k; // Differences between l and k m = abs(l - k); return m; } // Driver Code int main() { int n = 10; cout << Square_Diff(n); return 0; } // This code is contributed by 'Gitanjali' .
Java
// Java program to find the difference // between sum of the squares of the // first n natural numbers and square // of sum of first n natural number public class GfG{ static int Square_Diff(int n){ int l, k, m; // Sum of the squares of the // first n natural numbers is l = (n * (n + 1) * (2 * n + 1)) / 6; // Sum of n naturals numbers k = (n * (n + 1)) / 2; // Square of k k = k * k; // Differences between l and k m = Math.abs(l - k); return m; } // Driver Code public static void main(String s[]) { int n = 10; System.out.println(Square_Diff(n)); } } // This code is contributed by 'Gitanjali'.
Python
# Python3 program to find the difference # between sum of the squares of the # first n natural numbers and square # of sum of first n natural number def Square_Diff(n): # sum of the squares of the # first n natural numbers is l = (n * (n + 1) * (2 * n + 1)) / 6 # sum of n naturals numbers k = (n * (n + 1)) / 2 # square of k k = k ** 2 # Differences between l and k m = abs(l - k) return m # Driver code print(Square_Diff(10))
C#
using System; public class GFG { static int Square_Diff(int n) { int l, k, m; // Sum of the squares of the // first n natural numbers is l = (n * (n + 1) * (2 * n + 1)) / 6; // Sum of n naturals numbers k = (n * (n + 1)) / 2; // Square of k k = k * k; // Differences between l and k m = Math.Abs(l - k); return m; } // Driver Code public static void Main() { int n = 10; Console.WriteLine(Square_Diff(n)); } } // This code is contributed by akshitsaxena09.
PHP
<?php // PHP program to find the difference // between sum of the squares of the // first n natural numbers and square // of sum of first n natural number function Square_Diff($n) { $l; $k; $m; // Sum of the squares of the // first n natural numbers is $l = ($n * ($n + 1) * (2 * $n + 1)) / 6; // Sum of n naturals numbers $k = ($n * ($n + 1)) / 2; // Square of k $k = $k * $k; // Differences between // l and k $m = abs($l - $k); return $m; } // Driver Code $n = 10; echo Square_Diff($n); // This code is contributed by anuj_67 . ?>
Javascript
<script> // javascript program to find the difference // between sum of the squares of the // first n natural numbers and square // of sum of first n natural number function Square_Diff(n){ var l, k, m; // Sum of the squares of the // first n natural numbers is l = (n * (n + 1) * (2 * n + 1)) / 6; // Sum of n naturals numbers k = (n * (n + 1)) / 2; // Square of k k = k * k; // Differences between l and k m = Math.abs(l - k); return m; } // Driver Code var n = 10; document.write(Square_Diff(n)); // This code is contributed by Princi Singh </script>
Producción :
2640
Tiempo Complejidad: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por shrikanth13 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA