Dado un gráfico G , compruebe si representa una topología de bus.
Una Topología de Bus es la que se muestra en la siguiente imagen:
Ejemplos:
Input:
Output: YES Input:
Output: NO
Un gráfico de V vértices representa una topología de bus si cumple las siguientes dos condiciones:
- Cada Node, excepto los de inicio y final, tiene grado 2, mientras que el inicio y el final tienen grado 1.
- No de aristas = No de vértices – 1.
La idea es recorrer el gráfico y comprobar si cumple las dos condiciones anteriores. En caso afirmativo, entonces representa una topología de bus.
A continuación se muestra la implementación del enfoque anterior:
CPP
// CPP program to check if the given graph // represents a bus topology #include <bits/stdc++.h> using namespace std; // A utility function to add an edge in an // undirected graph. void addEdge(vector<int> adj[], int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // A utility function to print the adjacency list // representation of graph void printGraph(vector<int> adj[], int V) { for (int v = 0; v < V; ++v) { cout << "\n Adjacency list of vertex " << v << "\n head "; for (auto x : adj[v]) cout << "-> " << x; printf("\n"); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ bool checkBusTopologyUtil(vector<int> adj[], int V, int E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) return false; // a single node is termed as a bus topology if (V == 1) return true; int* vertexDegree = new int[V + 1]; memset(vertexDegree, 0, sizeof vertexDegree); // calculate the degree of each vertex for (int i = 1; i <= V; i++) { for (auto v : adj[i]) { vertexDegree[v]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 int countDegree2 = 0, countDegree1 = 0; for (int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true; } return false; } // Function to check if the graph represents a bus topology void checkBusTopology(vector<int> adj[], int V, int E) { bool isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { cout << "YES" << endl; } else { cout << "NO" << endl; } } // Driver code int main() { // Graph 1 int V = 5, E = 4; vector<int> adj1[V + 1]; addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4, E = 4; vector<int> adj2[V + 1]; addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); return 0; }
Java
// java program to check if the given graph // represents a bus topology import java.io.*; import java.util.*; class GFG { // A utility function to add an edge in an // undirected graph. static void addEdge(ArrayList<ArrayList<Integer>> adj, int u, int v) { adj.get(u).add(v); adj.get(v).add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(ArrayList<ArrayList<Integer>> adj, int V) { for (int v = 0; v < V; ++v) { System.out.print("\n Adjacency list of vertex " + v + "\n head "); for (int x : adj.get(v)) { System.out.print( "-> " + x); } System.out.println(); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ static boolean checkBusTopologyUtil(ArrayList<ArrayList<Integer>> adj, int V, int E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) { return false; } // a single node is termed as a bus topology if (V == 1) { return true; } int[] vertexDegree = new int[V + 1]; // calculate the degree of each vertex for (int i = 1; i <= V; i++) { for (int v : adj.get(i)) { vertexDegree[v]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 int countDegree2 = 0, countDegree1 = 0; for (int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true; } return false; } // Function to check if the graph represents a bus topology static void checkBusTopology(ArrayList<ArrayList<Integer>> adj, int V, int E) { boolean isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { System.out.println("YES"); } else { System.out.println("NO"); } } // Driver code public static void main (String[] args) { // Graph 1 int V = 5, E = 4; ArrayList<ArrayList<Integer>> adj1= new ArrayList<ArrayList<Integer>>(); for(int i = 0; i < V + 1; i++) { adj1.add(new ArrayList<Integer>()); } addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4; E = 4; ArrayList<ArrayList<Integer>> adj2 = new ArrayList<ArrayList<Integer>>(); for(int i = 0; i < (V + 1); i++) { adj2.add(new ArrayList<Integer>()); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); } } // This code is contributed by rag2127
Python3
# Python3 program to check if the given graph # represents a bus topology # A utility function to add an edge in an # undirected graph. def addEdge(adj, u, v): adj[u].append(v) adj[v].append(u) # A utility function to print the adjacency list # representation of graph def printGraph(adj, V): for v in range(V): print("Adjacency list of vertex ",v,"\n head ") for x in adj[v]: print("-> ",x,end=" ") printf() # /* Function to return true if the graph represented # by the adjacency list represents a bus topology # else return false */ def checkBusTopologyUtil(adj, V, E): # Number of edges should be equal # to (Number of vertices - 1) if (E != (V - 1)): return False # a single node is termed as a bus topology if (V == 1): return True vertexDegree = [0]*(V + 1) # calculate the degree of each vertex for i in range(V + 1): for v in adj[i]: vertexDegree[v] += 1 # countDegree2 - number of vertices with degree 2 # countDegree1 - number of vertices with degree 1 countDegree2,countDegree1 = 0,0 for i in range(1, V + 1): if (vertexDegree[i] == 2): countDegree2 += 1 elif (vertexDegree[i] == 1): countDegree1 += 1 else: # if any node has degree other # than 1 or 2, it is # NOT a bus topology return False # if both necessary conditions as discussed, # satisfy return true if (countDegree1 == 2 and countDegree2 == (V - 2)): return True return False # Function to check if the graph represents a bus topology def checkBusTopology(adj, V, E): isBus = checkBusTopologyUtil(adj, V, E) if (isBus): print("YES") else: print("NO" ) # Driver code # Graph 1 V, E = 5, 4 adj1 = [[] for i in range(V + 1)] addEdge(adj1, 1, 2) addEdge(adj1, 1, 3) addEdge(adj1, 3, 4) addEdge(adj1, 4, 5) checkBusTopology(adj1, V, E) # Graph 2 V, E = 4, 4 adj2 = [[] for i in range(V + 1)] addEdge(adj2, 1, 2) addEdge(adj2, 1, 3) addEdge(adj2, 3, 4) addEdge(adj2, 4, 2) checkBusTopology(adj2, V, E) # This code is contributed by mohit kumar 29
C#
// C# program to check if the given graph // represents a bus topology using System; using System.Collections.Generic; public class GFG{ // A utility function to add an edge in an // undirected graph. static void addEdge(List<List<int>> adj, int u, int v) { adj[u].Add(v); adj[v].Add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(List<List<int>> adj, int V) { for (int v = 0; v < V; ++v) { Console.WriteLine("\n Adjacency list of vertex " + v + "\n head "); foreach (int x in adj[v]) { Console.Write( "-> " + x); } Console.WriteLine(); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ static bool checkBusTopologyUtil(List<List<int>> adj, int V, int E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) { return false; } // a single node is termed as a bus topology if (V == 1) { return true; } int[] vertexDegree = new int[V + 1]; // calculate the degree of each vertex for (int i = 1; i <= V; i++) { foreach (int v in adj[i]) { vertexDegree[v]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 int countDegree2 = 0, countDegree1 = 0; for (int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true; } return false; } // Function to check if the graph represents a bus topology static void checkBusTopology(List<List<int>> adj, int V, int E) { bool isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { Console.WriteLine("YES"); } else { Console.WriteLine("NO"); } } // Driver code static public void Main () { // Graph 1 int V = 5, E = 4; List<List<int>> adj1 = new List<List<int>>(); for(int i = 0; i < V + 1; i++) { adj1.Add(new List<int>()); } addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4; E = 4; List<List<int>> adj2 = new List<List<int>>(); for(int i = 0; i < V + 1; i++) { adj2.Add(new List<int>()); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); } } // This code is contributed by avanitrachhadiya2155
Javascript
<script> // JavaScript program to check if the given graph // represents a bus topology // A utility function to add an edge in an // undirected graph. function addEdge(adj,u,v) { adj[u].push(v); adj[v].push(u); } // A utility function to print the adjacency list // representation of graph function printGraph(adj,V) { for (let v = 0; v < V; ++v) { document.write("\n Adjacency list of vertex " + v + "\n head "); for (let x=0;x<adj[v].length;x++) { document.write( "-> " + adj[v][x]); } document.write("<br>"); } } /* Function to return true if the graph represented by the adjacency list represents a bus topology else return false */ function checkBusTopologyUtil(adj,V,E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != (V - 1)) { return false; } // a single node is termed as a bus topology if (V == 1) { return true; } let vertexDegree = new Array(V + 1); for(let i=0;i<vertexDegree.length;i++) { vertexDegree[i]=0; } // calculate the degree of each vertex for (let i = 1; i <= V; i++) { for (let v=0;v<adj[i].length;v++) { vertexDegree[adj[i][v]]++; } } // countDegree2 - number of vertices with degree 2 // countDegree1 - number of vertices with degree 1 let countDegree2 = 0, countDegree1 = 0; for (let i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } else if (vertexDegree[i] == 1) { countDegree1++; } else { // if any node has degree other // than 1 or 2, it is // NOT a bus topology return false; } } // if both necessary conditions as discussed, // satisfy return true if (countDegree1 == 2 && countDegree2 == (V - 2)) { return true; } return false; } // Function to check if the graph represents a bus topology function checkBusTopology(adj,V,E) { let isBus = checkBusTopologyUtil(adj, V, E); if (isBus) { document.write("YES<br>"); } else { document.write("NO<br>"); } } // Driver code // Graph 1 let V = 5, E = 4; let adj1=[]; for(let i = 0; i < V + 1; i++) { adj1.push([]); } addEdge(adj1, 1, 2); addEdge(adj1, 1, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); checkBusTopology(adj1, V, E); // Graph 2 V = 4; E = 4; let adj2 = []; for(let i = 0; i < (V + 1); i++) { adj2.push([]); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkBusTopology(adj2, V, E); // This code is contributed by patel2127 </script>
Producción:
YES NO
Complejidad de tiempo: O(E), donde E es el número de aristas en el gráfico.
Espacio Auxiliar : O(1).