Dado un grafo G , la tarea es comprobar si representa una topología en anillo.
Una Topología en Anillo es la que se muestra en la siguiente imagen:
Ejemplos:
Input : Graph =
Output : YES Input : Graph =
Output : NO
Un gráfico de V vértices representa una topología en anillo si cumple las siguientes tres condiciones:
- Número de vértices >= 3.
- Todos los vértices deben tener grado 2 .
- Nº de aristas = Nº de vértices.
La idea es recorrer el gráfico y comprobar si cumple las tres condiciones anteriores. En caso afirmativo, entonces representa una topología en anillo; de lo contrario, no.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to check if the given graph // represents a Ring topology #include <bits/stdc++.h> using namespace std; // A utility function to add an edge in an // undirected graph. void addEdge(vector<int> adj[], int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // A utility function to print the adjacency list // representation of graph void printGraph(vector<int> adj[], int V) { for (int v = 0; v < V; ++v) { cout << "\n Adjacency list of vertex " << v << "\n head "; for (auto x : adj[v]) cout << "-> " << x; printf("\n"); } } /* Function to return true if the graph represented by the adjacency list represents a Ring topology else return false */ bool checkRingTopologyUtil(vector<int> adj[], int V, int E) { // Number of edges should be equal // to Number of vertices if (E != V) return false; // For a graph to represent a ring topology should have // greater than 2 nodes if (V <= 2) return false; int* vertexDegree = new int[V + 1]; memset(vertexDegree, 0, sizeof vertexDegree); // calculate the degree of each vertex for (int i = 1; i <= V; i++) { for (auto v : adj[i]) { vertexDegree[v]++; } } // countDegree2 stores the count of // the vertices having degree 2 int countDegree2 = 0; for (int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // if all three necessary conditions as discussed, // satisfy return true if (countDegree2 == V) { return true; } else { return false; } } // Function to check if the graph represents a Ring topology void checkRingTopology(vector<int> adj[], int V, int E) { bool isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { cout << "YES" << endl; } else { cout << "NO" << endl; } } // Driver code int main() { // Graph 1 int V = 6, E = 6; vector<int> adj1[V + 1]; addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 5, E = 4; vector<int> adj2[V + 1]; addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 5); checkRingTopology(adj2, V, E); return 0; }
Java
// Java program to check if the given graph // represents a Ring topology import java.util.*; class GFG{ // A utility function to add an edge in an // undirected graph. static void addEdge(Vector<Integer> adj[], int u, int v) { adj[u].add(v); adj[v].add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(Vector<Integer> adj[], int V) { for(int v = 0; v < V; ++v) { System.out.print("\n Adjacency list of vertex " + v + "\n head "); for(int x : adj[v]) System.out.print(". " + x); System.out.printf("\n"); } } // Function to return true if the graph represented // by the adjacency list represents a Ring topology // else return false static boolean checkRingTopologyUtil(Vector<Integer> adj[], int V, int E) { // Number of edges should be equal // to Number of vertices if (E != V) return false; // For a graph to represent a ring // topology should have greater // than 2 nodes if (V <= 2) return false; int[] vertexDegree = new int[V + 1]; // Calculate the degree of each vertex for(int i = 1; i <= V; i++) { for(int v : adj[i]) { vertexDegree[v]++; } } // countDegree2 stores the count of // the vertices having degree 2 int countDegree2 = 0; for(int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // If all three necessary conditions // as discussed, satisfy return true if (countDegree2 == V) { return true; } else { return false; } } // Function to check if the graph represents // a Ring topology static void checkRingTopology(Vector<Integer> adj[], int V, int E) { boolean isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { System.out.print("YES" + "\n"); } else { System.out.print("NO" + "\n"); } } // Driver code public static void main(String[] args) { // Graph 1 int V = 6, E = 6; @SuppressWarnings("unchecked") Vector<Integer> []adj1 = new Vector[V + 1]; for(int i = 0; i < adj1.length; i++) adj1[i] = new Vector<Integer>(); addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 5; E = 4; @SuppressWarnings("unchecked") Vector<Integer> []adj2 = new Vector[V + 1]; for(int i = 0; i < adj2.length; i++) adj2[i] = new Vector<Integer>(); addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 5); checkRingTopology(adj2, V, E); } } // This code is contributed by Amit Katiyar
Python3
# Python3 program to check if the given graph # represents a star topology # A utility function to add an edge in an # undirected graph. def addEdge(adj, u, v): adj[u].append(v) adj[v].append(u) # A utility function to print the adjacency list # representation of graph def printGraph(adj, V): for v in range(V): print("Adjacency list of vertex ",v,"\n head ") for x in adj[v]: print("-> ",x,end=" ") printf() # /* Function to return true if the graph represented # by the adjacency list represents a ring topology # else return false */ def checkRingTopologyUtil(adj, V, E): # Number of edges should be equal # to (Number of vertices - 1) if (E != (V)): return False # For a graph to represent a ring topology should have # greater than 2 nodes if (V <= 2): return False vertexDegree = [0]*(V + 1) # calculate the degree of each vertex for i in range(V+1): for v in adj[i]: vertexDegree[v] += 1 # countDegree2 stores the count of # the vertices having degree 2 countDegree2 = 0 for i in range(1, V + 1): if (vertexDegree[i] == 2): countDegree2 += 1 # if all three necessary conditions as discussed, # satisfy return true if (countDegree2 == V): return True else: return False # Function to check if the graph represents a ring topology def checkRingTopology(adj, V, E): isRing = checkRingTopologyUtil(adj, V, E) if (isRing): print("YES") else: print("NO" ) # Driver code # Graph 1 V,E = 6,6 adj1 = [[] for i in range(V + 1)] addEdge(adj1, 1, 2) addEdge(adj1, 2, 3) addEdge(adj1, 3, 4) addEdge(adj1, 4, 5) addEdge(adj1, 6, 1) addEdge(adj1, 5, 6) checkRingTopology(adj1, V, E) # Graph 2 V,E = 5,4 adj2 = [[] for i in range(V + 1)] addEdge(adj2, 1, 2) addEdge(adj2, 1, 3) addEdge(adj2, 3, 4) addEdge(adj2, 4, 2) checkRingTopology(adj2, V, E) # This code is contributed by mohit kumar 29
C#
// C# program to check if the given graph // represents a Ring topology using System; using System.Collections.Generic; class GFG { // A utility function to add an edge in an // undirected graph. static void addEdge(List<List<int>> adj, int u, int v ) { adj[u].Add(v); adj[v].Add(u); } // A utility function to print the adjacency list // representation of graph static void printGraph(List<List<int>> adj, int V) { for(int v = 0; v < V; ++v) { Console.Write("\n Adjacency list of vertex " + v + "\n head "); foreach(int x in adj[v]) { Console.Write(". " + x); } Console.WriteLine(); } } // Function to return true if the graph represented // by the adjacency list represents a Ring topology // else return false static bool checkRingTopologyUtil(List<List<int>> adj, int V, int E) { // Number of edges should be equal // to Number of vertices if (E != V) return false; // For a graph to represent a ring // topology should have greater // than 2 nodes if (V <= 2) return false; int[] vertexDegree = new int[V + 1]; // Calculate the degree of each vertex for(int i = 1; i <= V; i++) { foreach(int v in adj[i]) { vertexDegree[v]++; } } // countDegree2 stores the count of // the vertices having degree 2 int countDegree2 = 0; for(int i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // If all three necessary conditions // as discussed, satisfy return true if (countDegree2 == V) { return true; } else { return false; } } // Function to check if the graph represents // a Ring topology static void checkRingTopology(List<List<int>> adj, int V, int E) { bool isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { Console.Write("YES" + "\n"); } else { Console.Write("NO" + "\n"); } } // Driver code static public void Main () { // Graph 1 int V = 6, E = 6; List<List<int>> adj1 = new List<List<int>>(); for(int i = 0; i < V + 1; i++) { adj1.Add(new List<int>() ); } addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 6; E = 6; List<List<int>> adj2 = new List<List<int>>(); for(int i = 0; i < V + 1; i++) { adj2.Add(new List<int>() ); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 5); checkRingTopology(adj2, V, E); } } // This code is contributed by avanitrachhadiya2155
Javascript
<script> // JavaScript program to check if the given graph // represents a Ring topology // A utility function to add an edge in an // undirected graph. function addEdge(adj,u,v) { adj[u].push(v); adj[v].push(u); } // A utility function to print the adjacency list // representation of graph function printGraph(adj,V) { for (let v = 0; v < V; ++v) { document.write("\n Adjacency list of vertex " + v + "\n head "); for (let x=0;x<adj[v].length;x++) { document.write( "-> " + adj[v][x]); } document.write("<br>"); } } /* Function to return true if the graph represented by the adjacency list represents a Ring topology else return false */ function checkRingTopologyUtil(adj,V,E) { // Number of edges should be equal // to (Number of vertices - 1) if (E != V) { return false; } // a single node is termed as a bus topology if (V <= 2) { return false; } let vertexDegree = new Array(V + 1); for(let i=0;i<vertexDegree.length;i++) { vertexDegree[i]=0; } // calculate the degree of each vertex for (let i = 1; i <= V; i++) { for (let v=0;v<adj[i].length;v++) { vertexDegree[adj[i][v]]++; } } // countDegree2 stores the count of // the vertices having degree 2 let countDegree2 = 0; for (let i = 1; i <= V; i++) { if (vertexDegree[i] == 2) { countDegree2++; } } // If all three necessary conditions // as discussed, satisfy return true if (countDegree2 == V) { return true; } else { return false; } } // Function to check if the graph represents a Ring topology function checkRingTopology(adj,V,E) { let isRing = checkRingTopologyUtil(adj, V, E); if (isRing) { document.write("YES<br>"); } else { document.write("NO<br>"); } } // Driver code // Graph 1 let V = 6, E = 6; let adj1=[]; for(let i = 0; i < V + 1; i++) { adj1.push([]); } addEdge(adj1, 1, 2); addEdge(adj1, 2, 3); addEdge(adj1, 3, 4); addEdge(adj1, 4, 5); addEdge(adj1, 6, 1); addEdge(adj1, 5, 6); checkRingTopology(adj1, V, E); // Graph 2 V = 5; E = 4; let adj2 = []; for(let i = 0; i < (V + 1); i++) { adj2.push([]); } addEdge(adj2, 1, 2); addEdge(adj2, 1, 3); addEdge(adj2, 3, 4); addEdge(adj2, 4, 2); checkRingTopology(adj2, V, E); // This code is contributed by patel2127 </script>
Producción:
YES NO
Complejidad temporal : O(V + E) donde V y E son los números de vértices y aristas en el gráfico respectivamente.
Espacio Auxiliar : O(V + E).