Dado un valor K y un árbol binario , tenemos que encontrar el número total de caminos desde la raíz hasta los Nodes hoja que tienen XOR de todos sus Nodes a lo largo del camino igual a K.
Ejemplos:
Input: K = 6 2 / \ 1 4 / \ 10 5 Output: 2 Explanation: Subtree 1: 2 \ 4 This particular path has 2 nodes, 2 and 4 and (2 xor 4) = 6. Subtree 2: 2 / 1 \ 5 This particular path has 3 nodes; 2, 1 and 5 and (2 xor 1 xor 5) = 6.
Enfoque:
para resolver la pregunta mencionada anteriormente, tenemos que recorrer el árbol de forma recursiva utilizando el recorrido de preorden. Para cada Node, siga calculando el XOR de la ruta desde la raíz hasta el Node actual.
XOR de la ruta del Node actual = (XOR de la ruta hasta el padre) ^ (valor del Node actual)
Si el Node es un Node de hoja que está a la izquierda y el hijo derecho para los Nodes actuales es NULL, entonces verificamos si el valor xor de la ruta es K, si lo es, aumentamos el conteo; de lo contrario, no hacemos nada. Finalmente, imprima el valor en el conteo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to Count the number of // path from the root to leaf of a // Binary tree with given XOR value #include <bits/stdc++.h> using namespace std; // Binary tree node struct Node { int data; struct Node *left, *right; }; // Function to create a new node struct Node* newNode(int data) { struct Node* newNode = new Node; newNode->data = data; newNode->left = newNode->right = NULL; return (newNode); } void Count(Node* root, int xr, int& res, int& k) { // updating the xor value // with the xor of the path from // root to the node xr = xr ^ root->data; // check if node is leaf node if (root->left == NULL && root->right == NULL) { if (xr == k) { res++; } return; } // check if the left // node exist in the tree if (root->left != NULL) { Count(root->left, xr, res, k); } // check if the right node // exist in the tree if (root->right != NULL) { Count(root->right, xr, res, k); } return; } // Function to find the required count int findCount(Node* root, int K) { int res = 0, xr = 0; // recursively traverse the tree // and compute the count Count(root, xr, res, K); // return the result return res; } // Driver code int main(void) { // Create the binary tree struct Node* root = newNode(2); root->left = newNode(1); root->right = newNode(4); root->left->left = newNode(10); root->left->right = newNode(5); int K = 6; cout << findCount(root, K); return 0; }
Java
// Java program to Count the number of // path from the root to leaf of a // Binary tree with given XOR value import java.util.*; class GFG{ // Binary tree node static class Node { int data; Node left, right; }; static int res, k; // Function to create a new node static Node newNode(int data) { Node newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null; return (newNode); } static void Count(Node root, int xr) { // updating the xor value // with the xor of the path from // root to the node xr = xr ^ root.data; // check if node is leaf node if (root.left == null && root.right == null) { if (xr == k) { res++; } return; } // check if the left // node exist in the tree if (root.left != null) { Count(root.left, xr); } // check if the right node // exist in the tree if (root.right != null) { Count(root.right, xr); } return; } // Function to find the required count static int findCount(Node root, int K) { int xr = 0; res = 0; k = K; // recursively traverse the tree // and compute the count Count(root, xr); // return the result return res; } // Driver code public static void main(String[] args) { // Create the binary tree Node root = newNode(2); root.left = newNode(1); root.right = newNode(4); root.left.left = newNode(10); root.left.right = newNode(5); int K = 6; System.out.print(findCount(root, K)); } } // This code is contributed by 29AjayKumar
Python3
# Python3 program to Count # the number of path from # the root to leaf of a # Binary tree with given XOR value # Binary tree node class Node: def __init__(self, data): self.data = data self.left = None self.right = None def Count(root : Node, xr : int) -> None: global K, res # Updating the xor value # with the xor of the path from # root to the node xr = xr ^ root.data # Check if node is leaf node if (root.left is None and root.right is None): if (xr == K): res += 1 return # Check if the left # node exist in the tree if (root.left): Count(root.left, xr) # Check if the right node # exist in the tree if (root.right): Count(root.right, xr) return # Function to find the # required count def findCount(root : Node) -> int: global K, res xr = 0 # Recursively traverse the tree # and compute the count Count(root, xr) # return the result return res # Driver code if __name__ == "__main__": # Create the binary tree root = Node(2) root.left = Node(1) root.right = Node(4) root.left.left = Node(10) root.left.right = Node(5) K = 6 res = 0 print(findCount(root)) # This code is contributed by sanjeev2552
C#
// C# program to Count the number of // path from the root to leaf of a // Binary tree with given XOR value using System; class GFG{ // Binary tree node class Node { public int data; public Node left, right; }; static int res, k; // Function to create a new node static Node newNode(int data) { Node newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null; return (newNode); } static void Count(Node root, int xr) { // updating the xor value // with the xor of the path from // root to the node xr = xr ^ root.data; // check if node is leaf node if (root.left == null && root.right == null) { if (xr == k) { res++; } return; } // check if the left // node exist in the tree if (root.left != null) { Count(root.left, xr); } // check if the right node // exist in the tree if (root.right != null) { Count(root.right, xr); } return; } // Function to find the required count static int findCount(Node root, int K) { int xr = 0; res = 0; k = K; // recursively traverse the tree // and compute the count Count(root, xr); // return the result return res; } // Driver code public static void Main(String[] args) { // Create the binary tree Node root = newNode(2); root.left = newNode(1); root.right = newNode(4); root.left.left = newNode(10); root.left.right = newNode(5); int K = 6; Console.Write(findCount(root, K)); } } // This code is contributed by Princi Singh
Javascript
<script> // JavaScript program to Count the number of // path from the root to leaf of a // Binary tree with given XOR value // Binary tree node class Node { constructor() { this.data = 0; this.left = null; this.right = null; } }; var res, k; // Function to create a new node function newNode(data) { var newNode = new Node(); newNode.data = data; newNode.left = newNode.right = null; return (newNode); } function Count(root, xr) { // updating the xor value // with the xor of the path from // root to the node xr = xr ^ root.data; // check if node is leaf node if (root.left == null && root.right == null) { if (xr == k) { res++; } return; } // check if the left // node exist in the tree if (root.left != null) { Count(root.left, xr); } // check if the right node // exist in the tree if (root.right != null) { Count(root.right, xr); } return; } // Function to find the required count function findCount(root, K) { var xr = 0; res = 0; k = K; // recursively traverse the tree // and compute the count Count(root, xr); // return the result return res; } // Driver code // Create the binary tree var root = newNode(2); root.left = newNode(1); root.right = newNode(4); root.left.left = newNode(10); root.left.right = newNode(5); var K = 6; document.write(findCount(root, K)); </script>
2
Complejidad de tiempo: como en el enfoque anterior, estamos iterando sobre cada Node solo una vez, por lo tanto, tomará O (N) tiempo donde N es el número de Nodes en el árbol binario.
Espacio auxiliar: como en el enfoque anterior, no se usa espacio adicional, por lo tanto, la complejidad del espacio auxiliar será O (1).