Encuentra el producto de sumas de datos de hojas en los mismos niveles | conjunto 2

Dado un árbol binario, devuelve el siguiente valor para él. 
 

  • Para cada nivel, calcule la suma de todas las hojas si hay hojas en este nivel. De lo contrario, ignóralo.
  • Devuelve la multiplicación de todas las sumas.

Ejemplos
 

Input: Root of below tree
         2
       /   \
      7     5
             \
              9
Output: 63
First levels doesn't have leaves. Second level
has one leaf 7 and third level also has one 
leaf 9. Therefore result is 7*9 = 63

Input: Root of below tree
         2
       /   \
     7      5
    / \      \
   8   6      9
      / \    /  \
     1  11  4    10 

Output: 208
First two levels don't have leaves. Third
level has single leaf 8. Last level has four
leaves 1, 11, 4 and 10. Therefore result is 
8 * (1 + 11 + 4 + 10)  

En el artículo anterior , hemos visto una solución basada en colas que utiliza el orden transversal de niveles .
Aquí, simplemente estamos haciendo un recorrido de preorden del árbol binario , y hemos usado unordered_map en C++ STL para almacenar la suma de los Nodes hoja en el mismo nivel. Luego, en un solo recorrido del mapa, hemos calculado el producto final de las sumas de nivel.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to find product of sums
// of data of leaves at same levels
// using map in STL
#include <bits/stdc++.h>
using namespace std;
 
// Binary Tree Node
struct Node {
    int data;
    Node* left;
    Node* right;
};
 
// Utility function to create
// a new Tree node
Node* newNode(int data)
{
    Node* temp = new Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Helper function to calculate sum of
// leaf nodes at same level and store in
// an unordered_map
void productOfLevelSumUtil(Node* root,
       unordered_map<int, int>& level_sum,
                                int level)
{
 
    if (!root)
        return;
 
    // Check if current node is a leaf node
    // If yes add it to sum of current level
    if (!root->left && !root->right)
        level_sum[level] += root->data;
 
    // Traverse left subtree
    productOfLevelSumUtil(root->left, level_sum,
                          level + 1);
 
    // Traverse right subtree
    productOfLevelSumUtil(root->right, level_sum,
                          level + 1);
}
 
// Function to calculate product of level sums
int productOfLevelSum(Node* root)
{
    // Create a map to store sum of leaf
    // nodes at same levels.
    unordered_map<int, int> level_sum;
 
    // Call the helper function to
    // calculate level sums of leaf nodes
    productOfLevelSumUtil(root, level_sum, 0);
 
    // variable to store final product
    int prod = 1;
 
    // Traverse the map to calculate product
    // of level sums
    for (auto it = level_sum.begin();
                it != level_sum.end(); it++)
        prod *= it->second;
 
    // Return the result
    return prod;
}
 
// Driver Code
int main()
{
    // Creating Binary Tree
    Node* root = newNode(2);
    root->left = newNode(7);
    root->right = newNode(5);
    root->left->right = newNode(6);
    root->left->left = newNode(8);
    root->left->right->left = newNode(1);
    root->left->right->right = newNode(11);
    root->right->right = newNode(9);
    root->right->right->left = newNode(4);
    root->right->right->right = newNode(10);
 
    cout << "Final product is = "
         << productOfLevelSum(root) << endl;
 
    return 0;
}

Java

// Java program to find product of sums
// of data of leaves at same levels
// using map in STL
import java.util.*;
public class GFG
{
    // Binary Tree Node
    static class Node {
        
        int data;
        Node left, right;
        
        Node(int item)
        {
            data = item;
            left = right = null;
        }
    }
     
    // Root of the Binary Tree
    Node root;
    public GFG()
    {
        root = null;
    }
     
    // Utility function to create
    // a new Tree node
    static Node newNode(int data)
    {
        Node temp = new Node(data);
        return (temp);
    }
   
    // Create a map to store sum of leaf
    // nodes at same levels.
    static HashMap<Integer, Integer> level_sum = new HashMap<>();
   
    // Helper function to calculate sum of
    // leaf nodes at same level and store in
    // an unordered_map
    static void productOfLevelSumUtil(Node root, int level)
    {
   
        if (root == null)
            return;
   
        // Check if current node is a leaf node
        // If yes add it to sum of current level
        if (root.left == null && root.right == null)
        {
            if(level_sum.containsKey(level))
            { 
                level_sum.put(level, level_sum.get(level) + root.data);
            }
            else{
                level_sum.put(level, root.data);
            }
        }
   
        // Traverse left subtree
        productOfLevelSumUtil(root.left, level + 1);
   
        // Traverse right subtree
        productOfLevelSumUtil(root.right, level + 1);
    }
   
    // Function to calculate product of level sums
    static int productOfLevelSum(Node root)
    {
        // Call the helper function to
        // calculate level sums of leaf nodes
        productOfLevelSumUtil(root, 0);
   
        // variable to store final product
        int prod = 1;
   
        // Traverse the map to calculate product
        // of level sums
        for (Map.Entry<Integer, Integer> it : level_sum.entrySet())
        {
            prod *= it.getValue();
        }
   
        // Return the result
        return prod;
    }
     
    public static void main(String[] args) {
        // Creating Binary Tree
        GFG tree = new GFG();
        tree.root = newNode(2);
        tree.root.left = newNode(7);
        tree.root.right = newNode(5);
        tree.root.left.right = newNode(6);
        tree.root.left.left = newNode(8);
        tree.root.left.right.left = newNode(1);
        tree.root.left.right.right = newNode(11);
        tree.root.right.right = newNode(9);
        tree.root.right.right.left = newNode(4);
        tree.root.right.right.right = newNode(10);
         
        System.out.print("Final product is = " + productOfLevelSum(tree.root));
    }
}
 
// This code is contributed by divyeshrabadiya07.

C#

// C# program to find product of sums
// of data of leaves at same levels
// using map in STL
using System;
using System.Collections;
using System.Collections.Generic;
 
// Binary Tree Node
class Node {
       
    public int data;
    public Node left, right;
   
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
     
public class GFG {
     
    // Root of the Binary Tree
    Node root;
    public GFG()
    {
        root = null;
    }
    
    // Utility function to create
    // a new Tree node
    static Node newNode(int data)
    {
        Node temp = new Node(data);
        return (temp);
    }
  
    // Create a map to store sum of leaf
    // nodes at same levels.
    static Dictionary<int, int> level_sum = new Dictionary<int, int>();
  
    // Helper function to calculate sum of
    // leaf nodes at same level and store in
    // an unordered_map
    static void productOfLevelSumUtil(Node root, int level)
    {
  
        if (root == null)
            return;
  
        // Check if current node is a leaf node
        // If yes add it to sum of current level
        if (root.left == null && root.right == null)
        {
            if(level_sum.ContainsKey(level))
            {  
                level_sum[level] += root.data;
            }
            else{
                level_sum[level] = root.data;
            }
        }
  
        // Traverse left subtree
        productOfLevelSumUtil(root.left, level + 1);
  
        // Traverse right subtree
        productOfLevelSumUtil(root.right, level + 1);
    }
  
    // Function to calculate product of level sums
    static int productOfLevelSum(Node root)
    {
        // Call the helper function to
        // calculate level sums of leaf nodes
        productOfLevelSumUtil(root, 0);
  
        // variable to store final product
        int prod = 1;
  
        // Traverse the map to calculate product
        // of level sums
        foreach(KeyValuePair<int, int> it in level_sum)
        {
            prod *= it.Value;
        }
  
        // Return the result
        return prod;
    }
 
  static void Main() {
       
    // Creating Binary Tree
    GFG tree = new GFG();
    tree.root = newNode(2);
    tree.root.left = newNode(7);
    tree.root.right = newNode(5);
    tree.root.left.right = newNode(6);
    tree.root.left.left = newNode(8);
    tree.root.left.right.left = newNode(1);
    tree.root.left.right.right = newNode(11);
    tree.root.right.right = newNode(9);
    tree.root.right.right.left = newNode(4);
    tree.root.right.right.right = newNode(10);
    
    Console.Write("Final product is = " + productOfLevelSum(tree.root));
  }
}
 
// This code is contributed by decode2207.

Javascript

<script>
 
    // JavaScript program to find product of sums
    // of data of leaves at same levels
    // using map in STL
     
    // Binary Tree Node
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Utility function to create
    // a new Tree node
    function newNode(data)
    {
        let temp = new Node(data);
        return temp;
    }
     
    // Create a map to store sum of leaf
    // nodes at same levels.
    let level_sum = new Map();
 
    // Helper function to calculate sum of
    // leaf nodes at same level and store in
    // an unordered_map
    function productOfLevelSumUtil(root, level)
    {
 
        if (root == null)
            return;
 
        // Check if current node is a leaf node
        // If yes add it to sum of current level
        if (root.left == null && root.right == null)
        {
            if(level_sum.has(level))
            {   
                level_sum.set(level, level_sum.get(level) +
                root.data);
            }
            else{
                level_sum.set(level, root.data);
            }
        }
 
        // Traverse left subtree
        productOfLevelSumUtil(root.left, level + 1);
 
        // Traverse right subtree
        productOfLevelSumUtil(root.right, level + 1);
    }
 
    // Function to calculate product of level sums
    function productOfLevelSum(root)
    {
        // Call the helper function to
        // calculate level sums of leaf nodes
        productOfLevelSumUtil(root, 0);
 
        // variable to store final product
        let prod = 1;
 
        // Traverse the map to calculate product
        // of level sums
          level_sum.forEach((value,it)=>{
          prod *= value;
        })
 
        // Return the result
        return prod;
    }
     
    // Creating Binary Tree
    let root = newNode(2);
    root.left = newNode(7);
    root.right = newNode(5);
    root.left.right = newNode(6);
    root.left.left = newNode(8);
    root.left.right.left = newNode(1);
    root.left.right.right = newNode(11);
    root.right.right = newNode(9);
    root.right.right.left = newNode(4);
    root.right.right.right = newNode(10);
   
    document.write("Final product is = " + productOfLevelSum(root));
 
</script>
Producción: 

Final product is = 208

 

Complejidad de Tiempo : O(N) 
Espacio Auxiliar : O(N) 
Donde N es el número de Nodes en el Árbol Binario.
 

Publicación traducida automáticamente

Artículo escrito por coder_11 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *