Considere que tiene un árbol binario infinitamente largo que tiene un patrón como el siguiente:
1 / \ 2 3 / \ / \ 4 5 6 7 / \ / \ / \ / \ . . . . . . . .
Dados dos Nodes con valores x e y. La tarea es encontrar la longitud del camino más corto entre los dos Nodes.
Ejemplos:
Input: x = 2, y = 3 Output: 2 Input: x = 4, y = 6 Output: 4
Un enfoque ingenuo es almacenar todos los ancestros de ambos Nodes en 2 estructuras de datos ( vectores , arrays , etc.) y hacer una búsqueda binaria del primer elemento (deje el índice i) en vector1, y verifique si existe en el vector2 o no. Si es así, devuelve el índice (let x) del elemento en vector2. la respuesta sera asi
distancia = v1.tamaño() – 1 – i + v2.tamaño() – 1 – x
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ program to find distance // between two nodes // in a infinite binary tree #include <bits/stdc++.h> using namespace std; // to stores ancestors of first given node vector<int> v1; // to stores ancestors of first given node vector<int> v2; // normal binary search to find the element int BinarySearch(int x) { int low = 0; int high = v2.size() - 1; while (low <= high) { int mid = (low + high) / 2; if (v2[mid] == x) return mid; else if (v2[mid] > x) high = mid - 1; else low = mid + 1; } return -1; } // function to make ancestors of first node void MakeAncestorNode1(int x) { v1.clear(); while (x) { v1.push_back(x); x /= 2; } reverse(v1.begin(), v1.end()); } // function to make ancestors of second node void MakeAncestorNode2(int x) { v2.clear(); while (x) { v2.push_back(x); x /= 2; } reverse(v2.begin(), v2.end()); } // function to find distance between two nodes int Distance() { for (int i = v1.size() - 1; i >= 0; i--) { int x = BinarySearch(v1[i]); if (x != -1) { return v1.size() - 1 - i + v2.size() - 1 - x; } } } // Driver code int main() { int node1 = 2, node2 = 3; // find ancestors MakeAncestorNode1(node1); MakeAncestorNode2(node2); cout << "Distance between " << node1 << " and " << node2 << " is : " << Distance(); return 0; }
Java
// Java program to find distance // between two nodes // in a infinite binary tree import java.util.*; class GFG { // to stores ancestors of first given node static Vector<Integer> v1 = new Vector<Integer>(); // to stores ancestors of first given node static Vector<Integer> v2 = new Vector<Integer>(); // normal binary search to find the element static int BinarySearch(int x) { int low = 0; int high = v2.size() - 1; while (low <= high) { int mid = (low + high) / 2; if (v2.get(mid) == x) return mid; else if (v2.get(mid) > x) high = mid - 1; else low = mid + 1; } return -1; } // function to make ancestors of first node static void MakeAncestorNode1(int x) { v1.clear(); while (x > 0) { v1.add(x); x /= 2; } Collections.reverse(v1); } // function to make ancestors of second node static void MakeAncestorNode2(int x) { v2.clear(); while (x > 0) { v2.add(x); x /= 2; } Collections.reverse(v2); } // function to find distance between two nodes static int Distance() { for (int i = v1.size() - 1; i >= 0; i--) { int x = BinarySearch(v1.get(i)); if (x != -1) { return v1.size() - 1 - i + v2.size() - 1 - x; } } return Integer.MAX_VALUE; } // Driver code public static void main(String[] args) { int node1 = 2, node2 = 3; // find ancestors MakeAncestorNode1(node1); MakeAncestorNode2(node2); System.out.print("Distance between " + node1 + " and " + node2 + " is : " + Distance()); } } // This code is contributed by 29AjayKumar
Python3
# Python3 program to find the distance between # two nodes in an infinite binary tree # normal binary search to find the element def BinarySearch(x): low = 0 high = len(v2) - 1 while low <= high: mid = (low + high) // 2 if v2[mid] == x: return mid elif v2[mid] > x: high = mid - 1 else: low = mid + 1 return -1 # Function to make ancestors of first node def MakeAncestorNode1(x): v1.clear() while x: v1.append(x) x //= 2 v1.reverse() # Function to make ancestors of second node def MakeAncestorNode2(x): v2.clear() while x: v2.append(x) x //= 2 v2.reverse() # Function to find distance between two nodes def Distance(): for i in range(len(v1) - 1, -1, -1): x = BinarySearch(v1[i]) if x != -1: return (len(v1) - 1 - i + len(v2) - 1 - x) # Driver code if __name__ == "__main__": node1, node2 = 2, 3 v1, v2 = [], [] # Find ancestors MakeAncestorNode1(node1) MakeAncestorNode2(node2) print("Distance between", node1, "and", node2, "is :", Distance()) # This code is contributed by Rituraj Jain
C#
// C# program to find distance // between two nodes // in a infinite binary tree using System; using System.Collections.Generic; class GFG { // to stores ancestors of first given node static List<int> v1 = new List<int>(); // to stores ancestors of first given node static List<int> v2 = new List<int>(); // normal binary search to find the element static int BinarySearch(int x) { int low = 0; int high = v2.Count - 1; while (low <= high) { int mid = (low + high) / 2; if (v2[mid] == x) return mid; else if (v2[mid] > x) high = mid - 1; else low = mid + 1; } return -1; } // function to make ancestors of first node static void MakeAncestorNode1(int x) { v1.Clear(); while (x > 0) { v1.Add(x); x /= 2; } v1.Reverse(); } // function to make ancestors of second node static void MakeAncestorNode2(int x) { v2.Clear(); while (x > 0) { v2.Add(x); x /= 2; } v2.Reverse(); } // function to find distance between two nodes static int Distance() { for (int i = v1.Count - 1; i >= 0; i--) { int x = BinarySearch(v1[i]); if (x != -1) { return v1.Count - 1 - i + v2.Count - 1 - x; } } return int.MaxValue; } // Driver code public static void Main(String[] args) { int node1 = 2, node2 = 3; // find ancestors MakeAncestorNode1(node1); MakeAncestorNode2(node2); Console.Write("Distance between " + node1 + " and " + node2 + " is : " + Distance()); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript program to find distance // between two nodes // in a infinite binary tree // to stores ancestors of first given node let v1 = []; // to stores ancestors of first given node let v2 = []; // normal binary search to find the element function BinarySearch(x) { let low = 0; let high = v2.length - 1; while (low <= high) { let mid = Math.floor((low + high) / 2); if (v2[mid] == x) return mid; else if (v2[mid] > x) high = mid - 1; else low = mid + 1; } return -1; } // function to make ancestors of first node function MakeAncestorNode1(x) { v1=[]; while (x > 0) { v1.push(x); x = Math.floor(x/2); } v1.reverse(); } // function to make ancestors of second node function MakeAncestorNode2(x) { v2=[]; while (x > 0) { v2.push(x); x = Math.floor(x/2); } v2.reverse(); } // function to find distance between two nodes function Distance() { for (let i = v1.length - 1; i >= 0; i--) { let x = BinarySearch(v1[i]); if (x != -1) { return v1.length - 1 - i + v2.length - 1 - x; } } return Number.MAX_VALUE; } // Driver code let node1 = 2, node2 = 3; // find ancestors MakeAncestorNode1(node1); MakeAncestorNode2(node2); document.write("Distance between " + node1 + " and " + node2 + " is : " + Distance()); // This code is contributed by patel2127 </script>
Distance between 2 and 3 is : 2
Complejidad de tiempo: O(log(max(x, y)) * log(max(x, y)))
Espacio auxiliar: O(log(max(x, y)))
Un enfoque eficiente es usar la propiedad de 2*x y 2*x+1 dada. Sigue dividiendo el mayor de los dos Nodes por 2. Si el mayor se convierte en el menor, entonces divide el otro. En una etapa, ambos valores serán iguales, cuente el número de divisiones realizadas, que será la respuesta.
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ program to find the distance // between two nodes in an infinite // binary tree #include <bits/stdc++.h> using namespace std; // function to find the distance // between two nodes in an infinite // binary tree int Distance(int x, int y) { // swap the smaller if (x < y) { swap(x, y); } int c = 0; // divide till x!=y while (x != y) { // keep a count ++c; // perform division if (x > y) x = x >> 1; // when the smaller // becomes the greater if (y > x) { y = y >> 1; ++c; } } return c; } // Driver code int main() { int x = 4, y = 6; cout << Distance(x, y); return 0; }
Java
// Java program to find the distance // between two nodes in an infinite // binary tree class GFG { // function to find the distance // between two nodes in an infinite // binary tree static int Distance(int x, int y) { // swap the smaller if (x < y) { int temp = x; x = y; y = temp; } int c = 0; // divide till x!=y while (x != y) { // keep a count ++c; // perform division if (x > y) x = x >> 1; // when the smaller // becomes the greater if (y > x) { y = y >> 1; ++c; } } return c; } // Driver code public static void main(String[] args) { int x = 4, y = 6; System.out.println(Distance(x, y)); } } // This code is contributed by PrinciRaj1992
Python3
# Python3 program to find the distance between # two nodes in an infinite binary tree # Function to find the distance between # two nodes in an infinite binary tree def Distance(x, y): # Swap the smaller if x < y: x, y = y, x c = 0 # divide till x != y while x != y: # keep a count c += 1 # perform division if x > y: x = x >> 1 # when the smaller becomes # the greater if y > x: y = y >> 1 c += 1 return c # Driver code if __name__ == "__main__": x, y = 4, 6 print(Distance(x, y)) # This code is contributed by # Rituraj Jain
C#
// C# program to find the distance // between two nodes in an infinite // binary tree using System; class GFG { // function to find the distance // between two nodes in an infinite // binary tree static int Distance(int x, int y) { // swap the smaller if (x < y) { int temp = x; x = y; y = temp; } int c = 0; // divide till x!=y while (x != y) { // keep a count ++c; // perform division if (x > y) x = x >> 1; // when the smaller // becomes the greater if (y > x) { y = y >> 1; ++c; } } return c; } // Driver code public static void Main(String[] args) { int x = 4, y = 6; Console.WriteLine(Distance(x, y)); } } // This code contributed by Rajput-Ji
Javascript
<script> // Javascript program to find the distance // between two nodes in an infinite // binary tree // Function to find the distance // between two nodes in an infinite // binary tree function Distance(x, y) { // Swap the smaller if (x < y) { let temp = x; x = y; y = temp; } let c = 0; // Divide till x!=y while (x != y) { // Keep a count ++c; // Perform division if (x > y) x = x >> 1; // When the smaller // becomes the greater if (y > x) { y = y >> 1; ++c; } } return c; } // Driver code let x = 4, y = 6; document.write(Distance(x, y)); // This code is contributed by suresh07 </script>
4
Complejidad de tiempo: O(log(max(x, y)))
Espacio auxiliar: O(1)
El enfoque eficiente ha sido sugerido por Striver.
Otro enfoque:
La idea principal es utilizar la fórmula Nivel(n) + Nivel(m) – 2* LCA(n,m) . Por lo tanto, el nivel se puede calcular fácilmente utilizando la base logarítmica 2 y el LCA se puede calcular dividiendo el número mayor por 2 hasta que n y m sean iguales.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the distance // between two nodes in an infinite // binary tree #include <bits/stdc++.h> using namespace std; int LCA(int n,int m) { // swap to keep n smallest if (n > m) { swap(n, m); } // a,b is level of n and m int a = log2(n); int b = log2(m); // divide until n!=m while (n != m) { if (n < m) m = m >> 1; if (n > m) n = n >> 1; } // now n==m which is the LCA of n ,m int v = log2(n); return a + b - 2 * v; } // Driver Code int main() { int n = 2, m = 6; // Function call cout << LCA(n,m) << endl; return 0; }
Java
// Java program to find the distance // between two nodes in an infinite // binary tree import java.util.*; class GFG{ static int LCA(int n,int m) { // swap to keep n smallest if (n > m) { int temp = n; n = m; m = temp; } // a,b is level of n and m int a = (int)(Math.log(n) / Math.log(2)); int b = (int)(Math.log(m) / Math.log(2)); // divide until n!=m while (n != m) { if (n < m) m = m >> 1; if (n > m) n = n >> 1; } // now n==m which is the LCA of n ,m int v = (int)(Math.log(n) / Math.log(2)); return a + b - 2 * v; } // Driver Code public static void main(String[] args) { int n = 2, m = 6; // Function call System.out.print(LCA(n,m) +"\n"); } } // This code is contributed by umadevi9616
Python3
# python program to find the distance # between two nodes in an infinite # binary tree import math def LCA(n, m): # swap to keep n smallest if (n > m): n, m = m, n # a,b is level of n and m a = int(math.log2(n)) b = int(math.log2(m)) # divide until n!=m while (n != m): if (n < m): m = m >> 1 if (n > m): n = n >> 1 # now n==m which is the LCA of n ,m v = int(math.log2(n)) return a + b - 2 * v n = 2 m = 6 # Function call print(LCA(n,m)) # This code is contributed by shivanisinghss2110
C#
// C# program to find the distance // between two nodes in an infinite // binary tree using System; class GFG{ static int LCA(int n,int m) { // swap to keep n smallest if (n > m) { int temp = n; n = m; m = temp; } // a,b is level of n and m int a = (int)(Math.Log(n) / Math.Log(2)); int b = (int)(Math.Log(m) / Math.Log(2)); // divide until n!=m while (n != m) { if (n < m) m = m >> 1; if (n > m) n = n >> 1; } // now n==m which is the LCA of n ,m int v = (int)(Math.Log(n) / Math.Log(2)); return a + b - 2 * v; } // Driver Code public static void Main(String[] args) { int n = 2, m = 6; // Function call Console.Write(LCA(n,m) +"\n"); } } // This code is contributed by shivanisinghss2110
Javascript
<script> // JavaScript program to find the distance // between two nodes in an infinite // binary tree function LCA(n, m) { // Swap to keep n smallest if (n > m) { let temp = n; n = m; m = temp; } // a,b is level of n and m let a = Math.log2(n); let b = Math.log2(m); // Divide until n!=m while (n != m) { if (n < m) m = m >> 1; if (n > m) n = n >> 1; } // Now n==m which is the LCA of n ,m let v = Math.log2(n); return a + b - 2 * v; } // Driver Code let n = 2, m = 6; // Function call document.write(LCA(n, m)); // This code is contributed by shivanisinghss2110 </script>
3
Complejidad de tiempo: O(log(max(x, y)))
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA