Dado un árbol de búsqueda binario , la tarea es encontrar el Node con el valor mínimo.
Ejemplos:
Aporte:
Salida: 4
Enfoque: Simplemente atraviese el Node desde la raíz a la izquierda recursivamente hasta que la izquierda sea NULL. El Node cuya izquierda es NULL es el Node con el valor mínimo.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node* left; struct node* right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* node = (struct node*) malloc(sizeof(struct node)); node->data = data; node->left = NULL; node->right = NULL; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ struct node* insert(struct node* node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == NULL) return (newNode(data)); else { /* 2. Otherwise, recur down the tree */ if (data <= node->data) node->left = insert(node->left, data); else node->right = insert(node->right, data); /* return the (unchanged) node pointer */ return node; } } // Function to return the minimum node // in the given binary search tree int minValue(struct node* node) { if (node->left == NULL) return node->data; return minValue(node->left); } // Driver code int main() { // Create the BST struct node* root = NULL; root = insert(root, 4); insert(root, 2); insert(root, 1); insert(root, 3); insert(root, 6); insert(root, 5); cout << minValue(root); return 0; }
Java
// Java Implementation of the above approach class GFG { /* A binary tree node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left; Node right; }; /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = null; node.right = null; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ static Node insert(Node node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { /* 2. Otherwise, recur down the tree */ if (data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); /* return the (unchanged) node pointer */ return node; } } // Function to return the minimum node // in the given binary search tree static int minValue(Node node) { if (node.left == null) return node.data; return minValue(node.left); } // Driver code public static void main(String args[]) { // Create the BST Node root = null; root = insert(root, 4); insert(root, 2); insert(root, 1); insert(root, 3); insert(root, 6); insert(root, 5); System.out.println(minValue(root)); } } // This code has been contributed by 29AjayKumar
Python3
# Python3 Implementation of # the above approach class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Helper function that allocates # a new node with the given data # and null left and right pointers. def insert(node, data): if node is None : return Node(data) else: if data <= node.data: node.left = insert(node.left, data) else: node.right = insert(node.right, data) return node # Function to return the minimum node # in the given binary search tree def minValue(node): if node.left == None: return node.data return minValue(node.left) # Driver code if __name__ == "__main__" : # Create the BST root = None root = insert(root, 4) insert(root, 2) insert(root, 1) insert(root, 3) insert(root, 6) insert(root, 5) print(minValue(root)) # This code is contributed by vinayak
C#
// C# Implementation of the above approach using System; class GFG { /* A binary tree node has data, pointer to left child and a pointer to right child */ public class Node { public int data; public Node left; public Node right; }; /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = null; node.right = null; return (node); } /* Give a binary search tree and a number, inserts a new node with the given number in the correct place in the tree. Returns the new root pointer which the caller should then use (the standard trick to avoid using reference parameters). */ static Node insert(Node node, int data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { /* 2. Otherwise, recur down the tree */ if (data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); /* return the (unchanged) node pointer */ return node; } } // Function to return the minimum node // in the given binary search tree static int minValue(Node node) { if (node.left == null) return node.data; return minValue(node.left); } // Driver code public static void Main(String []args) { // Create the BST Node root = null; root = insert(root, 4); insert(root, 2); insert(root, 1); insert(root, 3); insert(root, 6); insert(root, 5); Console.WriteLine(minValue(root)); } } // This code contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the above approach // A binary tree node has data, pointer to // left child and a pointer to right child class Node { constructor() { this.data = 0; this.left = null; this.right = null; } }; // Helper function that allocates a new node // with the given data and null left and right // pointers. function newNode(data) { var node = new Node(); node.data = data; node.left = null; node.right = null; return (node); } // Give a binary search tree and a number, // inserts a new node with the given number in // the correct place in the tree. Returns the new // root pointer which the caller should then use // (the standard trick to avoid using reference // parameters). function insert(node, data) { /* 1. If the tree is empty, return a new, single node */ if (node == null) return (newNode(data)); else { /* 2. Otherwise, recur down the tree */ if (data <= node.data) node.left = insert(node.left, data); else node.right = insert(node.right, data); /* return the (unchanged) node pointer */ return node; } } // Function to return the minimum node // in the given binary search tree function minValue(node) { if (node.left == null) return node.data; return minValue(node.left); } // Driver code // Create the BST var root = null; root = insert(root, 4); insert(root, 2); insert(root, 1); insert(root, 3); insert(root, 6); insert(root, 5); document.write(minValue(root)); // This code is contributed by noob2000 </script>
Producción:
1
Complejidad de tiempo: O (n), el peor de los casos ocurre con árboles sesgados a la izquierda.
Espacio auxiliar : O(n), el número máximo de marcos de pila que podrían estar presentes en la memoria es ‘n’