Se le proporciona una array A[] de n elementos y un entero positivo k (que no sea 1). Ahora tiene que encontrar el número de pares Ai, Aj tales que Ai = Aj*(k x ) donde x es un número entero. Dado que (k≠1) .
Nota: (Ai, Aj) y (Aj, Ai) deben contarse una vez.
Ejemplos:
Input : A[] = {3, 6, 4, 2}, k = 2 Output : 2 Explanation : We have only two pairs (4, 2) and (3, 6) Input : A[] = {2, 2, 2}, k = 2 Output : 3 Explanation : (2, 2), (2, 2), (2, 2) that are (A1, A2), (A2, A3) and (A1, A3) are total three pairs where Ai = Aj * (k^0)
Para resolver este problema, primero ordenamos la array dada y luego para cada elemento Ai, encontramos un número de elementos igual al valor Ai * k^x para diferentes valores de x hasta que Ai * k^x es menor o igual que el mayor de Ai.
Algoritmo:
// sort the given array sort(A, A+n); // for each A[i] traverse rest array for (int i=0; i<n; i++) { for (int j=i+1; j<n; j++) { // count Aj such that Ai*k^x = Aj int x = 0; // increase x till Ai * k^x <= // largest element while ((A[i]*pow(k, x)) <= A[j]) { if ((A[i]*pow(k, x)) == A[j]) { ans++; break; } x++; } } } // return answer return ans;
C++
// Program to find pairs count #include <bits/stdc++.h> using namespace std; // function to count the required pairs int countPairs(int A[], int n, int k) { int ans = 0; // sort the given array sort(A, A + n); // for each A[i] traverse rest array for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // count Aj such that Ai*k^x = Aj int x = 0; // increase x till Ai * k^x <= largest element while ((A[i] * pow(k, x)) <= A[j]) { if ((A[i] * pow(k, x)) == A[j]) { ans++; break; } x++; } } } return ans; } // driver program int main() { int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6}; int n = sizeof(A) / sizeof(A[0]); int k = 3; cout << countPairs(A, n, k); return 0; }
Java
// Java program to find pairs count import java.io.*; import java .util.*; class GFG { // function to count the required pairs static int countPairs(int A[], int n, int k) { int ans = 0; // sort the given array Arrays.sort(A); // for each A[i] traverse rest array for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // count Aj such that Ai*k^x = Aj int x = 0; // increase x till Ai * k^x <= largest element while ((A[i] * Math.pow(k, x)) <= A[j]) { if ((A[i] * Math.pow(k, x)) == A[j]) { ans++; break; } x++; } } } return ans; } // Driver program public static void main (String[] args) { int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6}; int n = A.length; int k = 3; System.out.println (countPairs(A, n, k)); } } // This code is contributed by vt_m.
Python3
# Program to find pairs count import math # function to count the required pairs def countPairs(A, n, k): ans = 0 # sort the given array A.sort() # for each A[i] traverse rest array for i in range(0,n): for j in range(i + 1, n): # count Aj such that Ai*k^x = Aj x = 0 # increase x till Ai * k^x <= largest element while ((A[i] * math.pow(k, x)) <= A[j]) : if ((A[i] * math.pow(k, x)) == A[j]) : ans+=1 break x+=1 return ans # driver program A = [3, 8, 9, 12, 18, 4, 24, 2, 6] n = len(A) k = 3 print(countPairs(A, n, k)) # This code is contributed by # Smitha Dinesh Semwal
C#
// C# program to find pairs count using System; class GFG { // function to count the required pairs static int countPairs(int []A, int n, int k) { int ans = 0; // sort the given array Array.Sort(A); // for each A[i] traverse rest array for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // count Aj such that Ai*k^x = Aj int x = 0; // increase x till Ai * k^x <= largest element while ((A[i] * Math.Pow(k, x)) <= A[j]) { if ((A[i] * Math.Pow(k, x)) == A[j]) { ans++; break; } x++; } } } return ans; } // Driver program public static void Main () { int []A = {3, 8, 9, 12, 18, 4, 24, 2, 6}; int n = A.Length; int k = 3; Console.WriteLine(countPairs(A, n, k)); } } // This code is contributed by vt_m.
PHP
<?php // PHP Program to find pairs count // function to count // the required pairs function countPairs($A, $n, $k) { $ans = 0; // sort the given array sort($A); // for each A[i] // traverse rest array for ($i = 0; $i < $n; $i++) { for ($j = $i + 1; $j < $n; $j++) { // count Aj such that Ai*k^x = Aj $x = 0; // increase x till Ai * // k^x <= largest element while (($A[$i] * pow($k, $x)) <= $A[$j]) { if (($A[$i] * pow($k, $x)) == $A[$j]) { $ans++; break; } $x++; } } } return $ans; } // Driver Code $A = array(3, 8, 9, 12, 18, 4, 24, 2, 6); $n = count($A); $k = 3; echo countPairs($A, $n, $k); // This code is contributed by anuj_67. ?>
Javascript
<script> // Javascript Program to find pairs count // function to count the required pairs function countPairs(A, n, k) { var ans = 0; // sort the given array A.sort((a,b)=>a-b) // for each A[i] traverse rest array for (var i = 0; i < n; i++) { for (var j = i + 1; j < n; j++) { // count Aj such that Ai*k^x = Aj var x = 0; // increase x till Ai * k^x <= largest element while ((A[i] * Math.pow(k, x)) <= A[j]) { if ((A[i] * Math.pow(k, x)) == A[j]) { ans++; break; } x++; } } } return ans; } // driver program var A = [3, 8, 9, 12, 18, 4, 24, 2, 6]; var n = A.length; var k = 3; document.write( countPairs(A, n, k)); // This code is contributed by rutvik_56. </script>
6
Complejidad de tiempo: O(n*n), ya que se utilizan bucles anidados
Espacio auxiliar: O(1), ya que no se utiliza espacio adicional
Publicación traducida automáticamente
Artículo escrito por Shivam.Pradhan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA