Pares tales que uno es potencia múltiplo del otro

Se le proporciona una array A[] de n elementos y un entero positivo k (que no sea 1). Ahora tiene que encontrar el número de pares Ai, Aj tales que Ai = Aj*(k x ) donde x es un número entero. Dado que (k≠1) .
Nota: (Ai, Aj) y (Aj, Ai) deben contarse una vez.
Ejemplos: 
 

Input : A[] = {3, 6, 4, 2},  k = 2
Output : 2
Explanation : We have only two pairs 
(4, 2) and (3, 6)

Input : A[] = {2, 2, 2},   k = 2
Output : 3
Explanation : (2, 2), (2, 2), (2, 2) 
that are (A1, A2), (A2, A3) and (A1, A3) are 
total three pairs where Ai = Aj * (k^0) 

Para resolver este problema, primero ordenamos la array dada y luego para cada elemento Ai, encontramos un número de elementos igual al valor Ai * k^x para diferentes valores de x hasta que Ai * k^x es menor o igual que el mayor de Ai. 
Algoritmo: 
 

    // sort the given array
    sort(A, A+n);

    // for each A[i] traverse rest array
    for (int i=0; i<n; i++)
    {
        for (int j=i+1; j<n; j++)
        {
            // count Aj such that Ai*k^x = Aj
            int x = 0;

            // increase x till Ai * k^x <= 
            // largest element
            while ((A[i]*pow(k, x)) <= A[j])
            {
                if ((A[i]*pow(k, x)) == A[j])
                {              
                     ans++;
                     break;
                }
                x++;
            }        
        }   
    }
    // return answer
    return ans;

C++

// Program to find pairs count
#include <bits/stdc++.h>
using namespace std;
 
// function to count the required pairs
int countPairs(int A[], int n, int k) {
  int ans = 0;
  // sort the given array
  sort(A, A + n);
 
  // for each A[i] traverse rest array
  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
 
      // count Aj such that Ai*k^x = Aj
      int x = 0;
 
      // increase x till Ai * k^x <= largest element
      while ((A[i] * pow(k, x)) <= A[j]) {
        if ((A[i] * pow(k, x)) == A[j]) {
          ans++;
          break;
        }
        x++;
      }
    }
  }
  return ans;
}
 
// driver program
int main() {
  int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
  int n = sizeof(A) / sizeof(A[0]);
  int k = 3;
  cout << countPairs(A, n, k);
  return 0;
}

Java

// Java program to find pairs count
import java.io.*;
import java .util.*;
 
class GFG {
     
    // function to count the required pairs
    static int countPairs(int A[], int n, int k)
    {
        int ans = 0;
         
        // sort the given array
        Arrays.sort(A);
         
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++)
            {
         
                // count Aj such that Ai*k^x = Aj
                int x = 0;
             
                // increase x till Ai * k^x <= largest element
                while ((A[i] * Math.pow(k, x)) <= A[j])
                {
                    if ((A[i] * Math.pow(k, x)) == A[j])
                    {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
     
    // Driver program
    public static void main (String[] args)
    {
        int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
        int n = A.length;
        int k = 3;
        System.out.println (countPairs(A, n, k));
         
    }
}
 
// This code is contributed by vt_m.

Python3

# Program to find pairs count
import math
 
# function to count the required pairs
def countPairs(A, n, k):
    ans = 0
 
    # sort the given array
    A.sort()
     
    # for each A[i] traverse rest array
    for i in range(0,n):
 
        for j in range(i + 1, n):
 
            # count Aj such that Ai*k^x = Aj
            x = 0
 
            # increase x till Ai * k^x <= largest element
            while ((A[i] * math.pow(k, x)) <= A[j]) :
                if ((A[i] * math.pow(k, x)) == A[j]) :
                    ans+=1
                    break
                x+=1
    return ans
 
 
# driver program
A = [3, 8, 9, 12, 18, 4, 24, 2, 6]
n = len(A)
k = 3
 
print(countPairs(A, n, k))
 
# This code is contributed by
# Smitha Dinesh Semwal

C#

// C# program to find pairs count
using System;
 
class GFG {
     
    // function to count the required pairs
    static int countPairs(int []A, int n, int k)
    {
        int ans = 0;
         
        // sort the given array
        Array.Sort(A);
         
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
         
                // count Aj such that Ai*k^x = Aj
                int x = 0;
             
                // increase x till Ai * k^x <= largest element
                while ((A[i] * Math.Pow(k, x)) <= A[j])
                {
                    if ((A[i] * Math.Pow(k, x)) == A[j])
                    {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
     
    // Driver program
    public static void Main ()
    {
        int []A = {3, 8, 9, 12, 18, 4, 24, 2, 6};
        int n = A.Length;
        int k = 3;
        Console.WriteLine(countPairs(A, n, k));
         
    }
}
 
// This code is contributed by vt_m.

PHP

<?php
// PHP Program to find pairs count
 
// function to count
// the required pairs
function countPairs($A, $n, $k)
{
$ans = 0;
 
// sort the given array
sort($A);
 
// for each A[i]
// traverse rest array
for ($i = 0; $i < $n; $i++)
{
    for ($j = $i + 1; $j < $n; $j++)
    {
 
    // count Aj such that Ai*k^x = Aj
    $x = 0;
 
    // increase x till Ai *
    // k^x <= largest element
    while (($A[$i] * pow($k, $x)) <= $A[$j])
    {
        if (($A[$i] * pow($k, $x)) == $A[$j])
        {
        $ans++;
        break;
        }
        $x++;
    }
    }
}
return $ans;
}
 
// Driver Code
 
$A = array(3, 8, 9, 12, 18,
              4, 24, 2, 6);
$n = count($A);
$k = 3;
echo countPairs($A, $n, $k);
 
// This code is contributed by anuj_67.
?>

Javascript

<script>
 
// Javascript Program to find pairs count
 
// function to count the required pairs
function countPairs(A, n, k) {
  var ans = 0;
   
  // sort the given array
  A.sort((a,b)=>a-b)
 
  // for each A[i] traverse rest array
  for (var i = 0; i < n; i++) {
    for (var j = i + 1; j < n; j++) {
 
      // count Aj such that Ai*k^x = Aj
      var x = 0;
 
      // increase x till Ai * k^x <= largest element
      while ((A[i] * Math.pow(k, x)) <= A[j]) {
        if ((A[i] * Math.pow(k, x)) == A[j]) {
          ans++;
          break;
        }
        x++;
      }
    }
  }
  return ans;
}
 
// driver program
var A = [3, 8, 9, 12, 18, 4, 24, 2, 6];
var n = A.length;
var k = 3;
document.write( countPairs(A, n, k));
 
// This code is contributed by rutvik_56.
</script>
Producción : 

6

 

Complejidad de tiempo: O(n*n), ya que se utilizan bucles anidados
Espacio auxiliar: O(1), ya que no se utiliza espacio adicional

Publicación traducida automáticamente

Artículo escrito por Shivam.Pradhan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *