PUERTA | GATE-CS-2015 (Conjunto 3) | Pregunta 65

 \\ The   \hspace{2 mm}value \hspace{2 mm} of  \hspace{2 mm} \lim_{x\to\infty }(1 + x^{2})e^{-x} is
(A) 0
(B) 1/2
(C) 1
(D)

Answer: (A)
Explanation: This can be solved using L’Hôpital’s rule that uses derivatives to help evaluate limits involving indeterminate forms.

Ya que     \lim_{x \to c}f(x)=\lim_{x \to c}g(x)=\infty, and     \lim_{x\to c}\frac{f'(x)}{g'(x)}   exists

Obtenemos
    \lim_{x\to c}\frac{f(x)}{g(x)} = \lim_{x\to c}\frac{f'(x)}{g'(x)}.

    \lim_{x\to \infty}\frac{1 + x^2}{e^x} = \lim_{x\to \infty}\frac{2x}{e^x} = \lim_{x\to \infty}\frac{2}{e^x} = 0

Cuestionario de esta pregunta

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *