PUERTA | PUERTA CS 2013 | Pregunta 47

gatecs201320
(A) A
(B) B
(C) C
(D) D

Respuesta: (A) (D)
Explicación:  

La declaración dada es:

¬ ∃ x ( ∀y(α) ∧ ∀z(β) )

where ¬ is a negation operator, ∃ is Existential Quantifier with the 
meaning of "there Exists", and ∀ is a Universal Quantifier 
with the meaning   " for all " , and α, β can be treated as predicates.

here we can apply some of the  on the given statement, 
which are as follows :

[ Result 1 : ¬(∀x P(x)) <=> ∃ x¬P(x), i.e. negation 
of "for all" gives "there exists" and negation also gets applied to scope of 
quantifier, which is P(x) here. And also negation of "there exists" gives "for all", 
and negation also gets applied to scope of quantifier  ]

[ Result 2 :  ¬ ( A ∧ B ) = ( ¬A  ∨ ¬B )  ]

[ Result 3 :  ¬P  ∨ Q <=> P -> Q ]

[ Result 4 : If P ->Q, then by Result of Contrapositive,  ¬Q -> ¬P  ]

Ahora necesitamos usar estos resultados como se muestra a continuación:


 

¬ ∃ x ( ∀y(α) ∧ ∀z(β) )                 [ Given ]

=> ∀ x (¬∀y(α) ∨ ¬∀z(β) )          [ after applying Result 1 & Result 2 ]

=> ∀ x ( ∀y(α) -> ¬∀z(β) )     [after applying Result 3 ]

=> ∀ x ( ∀y(α) -> ∃z(¬β) )      [after applying Result 1]

which is same as the statement C. 



Now, we can also prove that given statement is logically equivalent to the statement
 in option  B.

Let's see how !

The above derived statement is :

∀ x ( ∀y(α) -> ∃z(¬β) )

Now this statement can be written as (or equivalent to) :

=> ∀ x ( ∀z(β) -> ∃y(¬α) )     [after applying Result 4 ]

And this statement is same as statement B. 
Hence the 

So, we can conclude that the Given statement is NOT logically equivalent to the 
statements A and D.

Por lo tanto, la respuesta correcta es la Opción A y la Opción D. Pero en GATE 2013,
se otorgaron puntos a todos para esta pregunta.
Cuestionario de esta pregunta

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *