Número máximo de Nodes a los que se puede llegar desde cada Node en un gráfico.

Dado un gráfico con N Nodes y K aristas bidireccionales entre ellos, encuentre el número de Nodes que se pueden alcanzar desde un particular. Se dice que dos Nodes X e Y son alcanzables si podemos comenzar en X y terminar en Y usando cualquier número de aristas. 

Nota: un Node es accesible a sí mismo.  

Input : N = 7
       1            5
        \          / \
         2        6 __ 7
          \  
           3
            \
             4

Output :4 4 4 4 3 3 3 
From node 1 ,nodes {1,2,3,4} can be visited
hence the answer is equal to 4
From node 5,nodes {5,6,7} can be visited.
hence the answer is equal to 3.
Similarly, print the count for every node.

Input : N = 8
      1              7
    /   \             \
   2     3              8   
    \   / \
      5    6
Output :6 6 6 6 6 6 2 2

Enfoque: 
para encontrar el número de Nodes accesibles desde un Node en particular, una cosa a observar es que podemos llegar desde un Node X a un Node Y solo cuando están en el mismo componente conectado. 
Dado que el gráfico es bidireccional, cualquier Node en un componente conexo a cualquier otro Node en los mismos componentes conexos. Por lo tanto, para un Node en particular, el número X de Nodes a los que se podrá acceder será el número de Nodes en ese componente en particular. Utilice la búsqueda en profundidad para encontrar la respuesta.

A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
vector<vector<int>> graph;
 
// Function to perform the DFS calculating the
// count of the elements in a connected component
void dfs(int curr, int& cnt, vector<int>& 
             visited, vector<int>& duringdfs)
{
    visited[curr] = 1;
 
    // Number of nodes in this component
    ++cnt;
 
    // Stores the nodes which belong
    // to current component
    duringdfs.push_back(curr);
    for (auto& child : graph[curr]) {
 
        // If the child is not visited
        if (visited[child] == 0) {
            dfs(child, cnt, visited, duringdfs);
        }
    }
}
 
// Function to return the desired
// count for every node in the graph
void MaximumVisit(int n, int k)
{
    // To keep track of nodes we visit
    vector<int> visited(n+1,0);
   
      // No of connected elements for each node  
      vector<int> ans(n+1);
 
    vector<int> duringdfs;
    for (int i = 1; i <= n; ++i) {
        duringdfs.clear();
        int cnt = 0;
 
        // If a node is not visited, perform a DFS as
        // this node belongs to a different component
        // which is not yet visited
        if (visited[i] == 0) {
            cnt = 0;
            dfs(i, cnt, visited, duringdfs);
        }
 
        // Now store the count of all the visited
        // nodes for any particular component.
        for (auto& x : duringdfs) {
            ans[x] = cnt;
        }
    }
    
    // Print the result
    for (int i = 1; i <= n; ++i) {
        cout << ans[i] << " ";
    }
    cout << endl;
    return;
}
 
// Function to build the graph
void MakeGraph(){
    graph[1].push_back(2);
    graph[2].push_back(1);
    graph[2].push_back(3);
    graph[3].push_back(2);
    graph[3].push_back(4);
    graph[4].push_back(3);
    graph[5].push_back(6);
    graph[6].push_back(5);
    graph[6].push_back(7);
    graph[7].push_back(6);
    graph[5].push_back(7);
    graph[7].push_back(5);
}
 
// Driver code
int main()
{
    int N = 7, K = 6;
     
      graph.resize(N+1);
    // Build the graph
    MakeGraph();
    
    MaximumVisit(N, K);
    return 0;
}

Java

// Java implementation of the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
    static final int maxx = 100005;
    @SuppressWarnings("unchecked")
    static Vector<Integer>[] graph = new Vector[maxx];
    static Vector<Integer> duringdfs = new Vector<>();
    static int cnt = 0;
 
    // Function to perform the DFS calculating the
    // count of the elements in a connected component
    static void dfs(int curr, int[] visited)
    {
        visited[curr] = 1;
 
        // Number of nodes in this component
        ++cnt;
 
        // Stores the nodes which belong
        // to current component
        duringdfs.add(curr);
        for (int child : graph[curr])
        {
 
            // If the child is not visited
            if (visited[child] == 0)
                dfs(child, visited);
        }
    }
 
    // Function to return the desired
    // count for every node in the graph
    static void maximumVisit(int n, int k)
    {
 
        // To keep track of nodes we visit
        int[] visited = new int[maxx];
 
        // Mark every node unvisited
        Arrays.fill(visited, 0);
 
        int[] ans = new int[maxx];
 
        // No of connected elements for each node
        Arrays.fill(ans, 0);
 
        for (int i = 1; i <= n; i++)
        {
            duringdfs.clear();
 
            // If a node is not visited, perform a DFS as
            // this node belongs to a different component
            // which is not yet visited
            if (visited[i] == 0)
            {
                cnt = 0;
                dfs(i, visited);
            }
 
            // Now store the count of all the visited
            // nodes for any particular component.
            for (int x : duringdfs)
                ans[x] = cnt;
        }
 
        // Print the result
        for (int i = 1; i <= n; i++)
            System.out.print(ans[i] + " ");
        System.out.println();
        return;
    }
 
    // Function to build the graph
    static void makeGraph()
    {
        // Initializing graph
        for (int i = 0; i < maxx; i++)
            graph[i] = new Vector<>();
 
        graph[1].add(2);
        graph[2].add(1);
        graph[2].add(3);
        graph[3].add(2);
        graph[3].add(4);
        graph[4].add(3);
        graph[5].add(6);
        graph[6].add(5);
        graph[6].add(7);
        graph[7].add(6);
        graph[5].add(7);
        graph[7].add(5);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 7, K = 6;
 
        // Build the graph
        makeGraph();
 
        maximumVisit(N, K);
    }
}
 
// This code is contributed by
// sanjeev2552

Python3

# Python3 implementation of the above approach
maxx = 100005
graph = [[] for i in range(maxx)]
 
# Function to perform the DFS calculating the 
# count of the elements in a connected component
def dfs(curr, cnt, visited, duringdfs):
 
    visited[curr] = 1
   
    # Number of nodes in this component
    cnt += 1
     
    # Stores the nodes which belong 
    # to current component
    duringdfs.append(curr)
     
    for child in graph[curr]:
   
        # If the child is not visited
        if (visited[child] == 0):
            cnt, duringdfs = dfs(child, cnt,
                                 visited, duringdfs)
     
    return cnt, duringdfs
         
# Function to return the desired 
# count for every node in the graph
def MaximumVisit(n, k):
 
    # To keep track of nodes we visit
    visited = [0 for i in range(maxx)]
   
    ans = [0 for i in range(maxx)]
   
    duringdfs = []
     
    for i in range(1, n + 1):
        duringdfs.clear()
         
        cnt = 0
   
        # If a node is not visited, perform a DFS as 
        # this node belongs to a different component
        # which is not yet visited
        if (visited[i] == 0):
            cnt = 0
            cnt, duringdfs = dfs(i, cnt,
                                 visited, duringdfs)
         
        # Now store the count of all the visited
        # nodes for any particular component.
        for x in duringdfs:
            ans[x] = cnt
             
    # Print the result
    for i in range(1, n + 1):
        print(ans[i], end = ' ')
     
    print()
     
    return
 
# Function to build the graph
def MakeGraph():
     
    graph[1].append(2)
    graph[2].append(1)
    graph[2].append(3)
    graph[3].append(2)
    graph[3].append(4)
    graph[4].append(3)
    graph[5].append(6)
    graph[6].append(5)
    graph[6].append(7)
    graph[7].append(6)
    graph[5].append(7)
    graph[7].append(5)
 
# Driver code
if __name__=='__main__':
 
    N = 7
    K = 6
       
    # Build the graph
    MakeGraph()
      
    MaximumVisit(N, K)
 
# This code is contributed by rutvik_56

C#

// C# implementation of the above approach
using System;
using System.Collections;
  
class GFG{
  
static int maxx = 100005;
 
static ArrayList[] graph = new ArrayList[maxx];
static ArrayList duringdfs = new ArrayList();
static int cnt = 0;
 
// Function to perform the DFS calculating the
// count of the elements in a connected component
static void dfs(int curr, int[] visited)
{
    visited[curr] = 1;
     
    // Number of nodes in this component
    ++cnt;
 
    // Stores the nodes which belong
    // to current component
    duringdfs.Add(curr);
     
    foreach(int child in graph[curr])
    {
         
        // If the child is not visited
        if (visited[child] == 0)
            dfs(child, visited);
    }
}
 
// Function to return the desired
// count for every node in the graph
static void maximumVisit(int n, int k)
{
     
    // To keep track of nodes we visit
    int[] visited = new int[maxx];
 
    // Mark every node unvisited
    Array.Fill(visited, 0);
 
    int[] ans = new int[maxx];
 
    // No of connected elements for each node
    Array.Fill(ans, 0);
 
    for(int i = 1; i <= n; i++)
    {
        duringdfs.Clear();
 
        // If a node is not visited, perform
        // a DFS as this node belongs to a
        // different component which is not
        // yet visited
        if (visited[i] == 0)
        {
            cnt = 0;
            dfs(i, visited);
        }
 
        // Now store the count of all the visited
        // nodes for any particular component.
        foreach(int x in duringdfs)
            ans[x] = cnt;
    }
 
    // Print the result
    for(int i = 1; i <= n; i++)
        Console.Write(ans[i] + " ");
         
    Console.WriteLine();
    return;
}
 
// Function to build the graph
static void makeGraph()
{
     
    // Initializing graph
    for(int i = 0; i < maxx; i++)
        graph[i] = new ArrayList();
 
    graph[1].Add(2);
    graph[2].Add(1);
    graph[2].Add(3);
    graph[3].Add(2);
    graph[3].Add(4);
    graph[4].Add(3);
    graph[5].Add(6);
    graph[6].Add(5);
    graph[6].Add(7);
    graph[7].Add(6);
    graph[5].Add(7);
    graph[7].Add(5);
}
 
// Driver Code
public static void Main(string[] args)
{
    int N = 7, K = 6;
     
    // Build the graph
    makeGraph();
 
    maximumVisit(N, K);
}
}
 
// This code is contributed by pratham76

Javascript

<script>
    // Javascript implementation of the above approach
     
    let maxx = 100005;
  
    let graph = new Array(maxx);
    for(let i = 0; i < maxx; i++)
    {
        graph[i] = [];
    }
    let duringdfs = [];
    let cnt = 0;
 
    // Function to perform the DFS calculating the
    // count of the elements in a connected component
    function dfs(curr, visited)
    {
        visited[curr] = 1;
 
        // Number of nodes in this component
        ++cnt;
 
        // Stores the nodes which belong
        // to current component
        duringdfs.push(curr);
 
        for(let child = 0; child < graph[curr].length; child++)
        {
 
            // If the child is not visited
            if (visited[graph[curr][child]] == 0)
                dfs(graph[curr][child], visited);
        }
    }
 
    // Function to return the desired
    // count for every node in the graph
    function maximumVisit(n, k)
    {
 
        // To keep track of nodes we visit
        let visited = new Array(maxx);
 
        // Mark every node unvisited
        visited.fill(0);
 
        let ans = new Array(maxx);
 
        // No of connected elements for each node
        ans.fill(0);
 
        for(let i = 1; i <= n; i++)
        {
            duringdfs = [];
 
            // If a node is not visited, perform
            // a DFS as this node belongs to a
            // different component which is not
            // yet visited
            if (visited[i] == 0)
            {
                cnt = 0;
                dfs(i, visited);
            }
 
            // Now store the count of all the visited
            // nodes for any particular component.
            for(let x = 0; x < duringdfs.length; x++)
                ans[duringdfs[x]] = cnt;
        }
 
        // Print the result
        for(let i = 1; i <= n; i++)
            document.write(ans[i] + " ");
 
        document.write("</br>");
        return;
    }
     
    // Function to build the graph
    function makeGraph()
    {
 
        // Initializing graph
        for(let i = 0; i < maxx; i++)
            graph[i] = [];
 
        graph[1].push(2);
        graph[2].push(1);
        graph[2].push(3);
        graph[3].push(2);
        graph[3].push(4);
        graph[4].push(3);
        graph[5].push(6);
        graph[6].push(5);
        graph[6].push(7);
        graph[7].push(6);
        graph[5].push(7);
        graph[7].push(5);
    }
     
    let N = 7, K = 6;
      
    // Build the graph
    makeGraph();
  
    maximumVisit(N, K);
 
// This code is contributed by divyesh072019.
</script>
Producción: 

4 4 4 4 3 3 3

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por ajourney y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *