Dado un árbol de búsqueda binario, la tarea es aplanarlo en una lista ordenada en orden decreciente. Precisamente, el valor de cada Node debe ser mayor que los valores de todos los Nodes a su derecha, y su Node izquierdo debe ser NULL después del aplanamiento. Debemos hacerlo en O(H) espacio extra donde ‘H’ es la altura de BST.
Ejemplos:
Input: 5 / \ 3 7 / \ / \ 2 4 6 8 Output: 8 7 6 5 4 3 2 Input: 1 \ 2 \ 3 \ 4 \ 5 Output: 5 4 3 2 1
Enfoque: un enfoque simple será recrear el BST a partir de su recorrido ‘en orden inverso’. Esto tomará O(N) espacio extra donde N es el número de Nodes en BST.
Para mejorar eso, simularemos el recorrido inverso en orden de un árbol binario de la siguiente manera:
- Cree un Node ficticio.
- Cree una variable llamada ‘prev’ y haga que apunte al Node ficticio.
- Realice un recorrido inverso en orden y en cada paso.
- Establecer anterior -> derecha = actual
- Establecer anterior -> izquierda = NULL
- Establecer anterior = actual
Esto mejorará la complejidad del espacio a O(H) en el peor de los casos, ya que el recorrido en orden requiere espacio adicional de O(H).
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the // above approach #include <bits/stdc++.h> using namespace std; // Node of the binary tree struct node { int data; node* left; node* right; node(int data) { this->data = data; left = NULL; right = NULL; } }; // Function to print flattened // binary tree void print(node* parent) { node* curr = parent; while (curr != NULL) cout << curr->data << " ", curr = curr->right; } // Function to perform reverse in-order traversal void revInorder(node* curr, node*& prev) { // Base case if (curr == NULL) return; revInorder(curr->right, prev); prev->left = NULL; prev->right = curr; prev = curr; revInorder(curr->left, prev); } // Function to flatten binary tree using // level order traversal node* flatten(node* parent) { // Dummy node node* dummy = new node(-1); // Pointer to previous element node* prev = dummy; // Calling in-order traversal revInorder(parent, prev); prev->left = NULL; prev->right = NULL; node* ret = dummy->right; // Delete dummy node delete dummy; return ret; } // Driver code int main() { node* root = new node(5); root->left = new node(3); root->right = new node(7); root->left->left = new node(2); root->left->right = new node(4); root->right->left = new node(6); root->right->right = new node(8); // Calling required function print(flatten(root)); return 0; }
Java
// Java implementation of the // above approach import java.util.*; class GFG{ // Node of the binary tree static class node { int data; node left; node right; node(int data) { this.data = data; left = null; right = null; } }; // Function to print flattened // binary tree static void print(node parent) { node curr = parent; while (curr != null) { System.out.print(curr.data + " "); curr = curr.right; } } static node prev; // Function to perform reverse // in-order traversal static void revInorder(node curr) { // Base case if (curr == null) return; revInorder(curr.right); prev.left = null; prev.right = curr; prev = curr; revInorder(curr.left); } // Function to flatten binary // tree using level order // traversal static node flatten(node parent) { // Dummy node node dummy = new node(-1); // Pointer to previous // element prev = dummy; // Calling in-order // traversal revInorder(parent); prev.left = null; prev.right = null; node ret = dummy.right; // Delete dummy node //delete dummy; return ret; } // Driver code public static void main(String[] args) { node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); // Calling required function print(flatten(root)); } } // This code is contributed by Amit Katiyar
Python3
# Python3 implementation of the # above approach # Node of the binary tree class node: def __init__(self, data): self.data = data; self.left = None; self.right = None; # Function to print flattened # binary tree def printNode(parent): curr = parent; while (curr != None): print(curr.data, end = ' ') curr = curr.right; # Function to perform reverse in-order traversal def revInorder(curr): global prev; # Base case if (curr == None): return; revInorder(curr.right); prev.left = None; prev.right = curr; prev = curr; revInorder(curr.left); # Function to flatten binary tree using # level order traversal def flatten(parent): global prev; # Dummy node dummy = node(-1); # Pointer to previous element prev = dummy; # Calling in-order traversal revInorder(parent); prev.left = None; prev.right = None; ret = dummy.right; return ret; # Driver code prev = node(0) root = node(5); root.left = node(3); root.right = node(7); root.left.left = node(2); root.left.right = node(4); root.right.left = node(6); root.right.right = node(8); # Calling required function printNode(flatten(root)); # This code is contributed by rrrtnx.
C#
// C# implementation of the // above approach using System; class GFG{ // Node of the binary tree public class node { public int data; public node left; public node right; public node(int data) { this.data = data; left = null; right = null; } }; // Function to print flattened // binary tree static void print(node parent) { node curr = parent; while (curr != null) { Console.Write(curr.data + " "); curr = curr.right; } } static node prev; // Function to perform reverse // in-order traversal static void revInorder(node curr) { // Base case if (curr == null) return; revInorder(curr.right); prev.left = null; prev.right = curr; prev = curr; revInorder(curr.left); } // Function to flatten binary // tree using level order // traversal static node flatten(node parent) { // Dummy node node dummy = new node(-1); // Pointer to previous // element prev = dummy; // Calling in-order // traversal revInorder(parent); prev.left = null; prev.right = null; node ret = dummy.right; // Delete dummy node //delete dummy; return ret; } // Driver code public static void Main(String[] args) { node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); // Calling required function print(flatten(root)); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the approach // Node of the binary tree class node { constructor(data) { this.left = null; this.right = null; this.data = data; } } // Function to print flattened // binary tree function print(parent) { let curr = parent; while (curr != null) { document.write(curr.data + " "); curr = curr.right; } } let prev; // Function to perform reverse // in-order traversal function revInorder(curr) { // Base case if (curr == null) return; revInorder(curr.right); prev.left = null; prev.right = curr; prev = curr; revInorder(curr.left); } // Function to flatten binary // tree using level order // traversal function flatten(parent) { // Dummy node let dummy = new node(-1); // Pointer to previous // element prev = dummy; // Calling in-order // traversal revInorder(parent); prev.left = null; prev.right = null; let ret = dummy.right; // Delete dummy node //delete dummy; return ret; } // Driver code let root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); // Calling required function print(flatten(root)); // This code is contributed by divyeshrabadiya07 </script>
8 7 6 5 4 3 2
Complejidad temporal: O(N)
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA