Dados dos árboles de búsqueda binarios y un entero X , la tarea es encontrar un par de Nodes, uno perteneciente al primer BST y el segundo perteneciente al otro tal que su suma sea igual a X . Si existe tal par, escriba Sí , de lo contrario , escriba No.
Ejemplos:
Input: X = 100 BST 1: 5 / \ 3 7 / \ / \ 2 4 6 8 BST 2: 11 \ 13 Output: No There is no such pair with given value. Input: X = 16 BST 1: 5 / \ 3 7 / \ / \ 2 4 6 8 BST 2: 11 \ 13 Output: Yes 5 + 11 = 16
Enfoque: Resolveremos este problema utilizando el enfoque de dos punteros.
Crearemos un iterador hacia adelante en el primer BST y hacia atrás en el segundo. Por lo tanto, mantendremos un iterador hacia adelante y hacia atrás que iterará los BST en el orden de recorrido en orden y en orden inverso, respectivamente.
- Cree un iterador hacia adelante y hacia atrás para el primer y segundo BST respectivamente. Digamos que el valor de los Nodes a los que apuntan es v1 y v2.
- Ahora en cada paso,
- Si v1 + v2 = X, encontramos un par.
- Si v1 + v2 es menor o igual que x, haremos que el iterador hacia adelante apunte al siguiente elemento.
- Si v1 + v2 es mayor que x, haremos que el iterador hacia atrás apunte al elemento anterior.
- Continuaremos con lo anterior mientras ambos iteradores apuntan a un Node válido.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Node of the binary tree struct node { int data; node* left; node* right; node(int data) { this->data = data; left = NULL; right = NULL; } }; // Function that returns true if a pair // with given sum exists in the given BSTs bool existsPair(node* root1, node* root2, int x) { // Stack to store nodes for forward and backward // iterator stack<node *> it1, it2; // Initializing forward iterator node* c = root1; while (c != NULL) it1.push(c), c = c->left; // Initializing backward iterator c = root2; while (c != NULL) it2.push(c), c = c->right; // Two pointer technique while (it1.size() and it2.size()) { // To store the value of the nodes // current iterators are pointing to int v1 = it1.top()->data, v2 = it2.top()->data; // If found a valid pair if (v1 + v2 == x) return true; // Moving forward iterator if (v1 + v2 < x) { c = it1.top()->right; it1.pop(); while (c != NULL) it1.push(c), c = c->left; } // Moving backward iterator else { c = it2.top()->left; it2.pop(); while (c != NULL) it2.push(c), c = c->right; } } // If no such pair found return false; } // Driver code int main() { // First BST node* root1 = new node(11); root1->right = new node(15); // Second BST node* root2 = new node(5); root2->left = new node(3); root2->right = new node(7); root2->left->left = new node(2); root2->left->right = new node(4); root2->right->left = new node(6); root2->right->right = new node(8); int x = 23; if (existsPair(root1, root2, x)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Node of the binary tree static class node { int data; node left; node right; node(int data) { this.data = data; left = null; right = null; } }; // Function that returns true if a pair // with given sum exists in the given BSTs static boolean existsPair(node root1, node root2, int x) { // Stack to store nodes for forward and backward // iterator Stack<node> it1 = new Stack(), it2 = new Stack(); // Initializing forward iterator node c = root1; while (c != null) { it1.push(c); c = c.left; } // Initializing backward iterator c = root2; while (c != null) { it2.push(c); c = c.right; } // Two pointer technique while (it1.size() > 0 && it2.size() > 0) { // To store the value of the nodes // current iterators are pointing to int v1 = it1.peek().data, v2 = it2.peek().data; // If found a valid pair if (v1 + v2 == x) return true; // Moving forward iterator if (v1 + v2 < x) { c = it1.peek().right; it1.pop(); while (c != null) { it1.push(c); c = c.left; } } // Moving backward iterator else { c = it2.peek().left; it2.pop(); while (c != null) { it2.push(c); c = c.right; } } } // If no such pair found return false; } // Driver code public static void main(String[] args) { // First BST node root1 = new node(11); root1.right = new node(15); // Second BST node root2 = new node(5); root2.left = new node(3); root2.right = new node(7); root2.left.left = new node(2); root2.left.right = new node(4); root2.right.left = new node(6); root2.right.right = new node(8); int x = 23; if (existsPair(root1, root2, x)) System.out.println("Yes"); else System.out.println("No"); } } // This code is contributed by Princi Singh
Python3
# Python3 implementation of the approach # Node of the binary tree class node: def __init__ (self, key): self.data = key self.left = None self.right = None # Function that returns true if a pair # with given sum exists in the given BSTs def existsPair(root1, root2, x): # Stack to store nodes for forward # and backward iterator it1, it2 = [], [] # Initializing forward iterator c = root1 while (c != None): it1.append(c) c = c.left # Initializing backward iterator c = root2 while (c != None): it2.append(c) c = c.right # Two pointer technique while (len(it1) > 0 and len(it2) > 0): # To store the value of the nodes # current iterators are pointing to v1 = it1[-1].data v2 = it2[-1].data # If found a valid pair if (v1 + v2 == x): return True # Moving forward iterator if (v1 + v2 < x): c = it1[-1].right del it1[-1] while (c != None): it1.append(c) c = c.left # Moving backward iterator else: c = it2[-1].left del it2[-1] while (c != None): it2.append(c) c = c.right # If no such pair found return False # Driver code if __name__ == '__main__': # First BST root1 = node(11) root1.right = node(15) # Second BST root2 = node(5) root2.left = node(3) root2.right = node(7) root2.left.left = node(2) root2.left.right = node(4) root2.right.left = node(6) root2.right.right = node(8) x = 23 if (existsPair(root1, root2, x)): print("Yes") else: print("No") # This code is contributed by mohit kumar 29
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Node of the binary tree public class node { public int data; public node left; public node right; public node(int data) { this.data = data; left = null; right = null; } }; // Function that returns true if a pair // with given sum exists in the given BSTs static bool existsPair(node root1, node root2, int x) { // Stack to store nodes for forward and backward // iterator Stack<node> it1 = new Stack<node>(), it2 = new Stack<node>(); // Initializing forward iterator node c = root1; while (c != null) { it1.Push(c); c = c.left; } // Initializing backward iterator c = root2; while (c != null) { it2.Push(c); c = c.right; } // Two pointer technique while (it1.Count > 0 && it2.Count > 0) { // To store the value of the nodes // current iterators are pointing to int v1 = it1.Peek().data, v2 = it2.Peek().data; // If found a valid pair if (v1 + v2 == x) return true; // Moving forward iterator if (v1 + v2 < x) { c = it1.Peek().right; it1.Pop(); while (c != null) { it1.Push(c); c = c.left; } } // Moving backward iterator else { c = it2.Peek().left; it2.Pop(); while (c != null) { it2.Push(c); c = c.right; } } } // If no such pair found return false; } // Driver code public static void Main(String[] args) { // First BST node root1 = new node(11); root1.right = new node(15); // Second BST node root2 = new node(5); root2.left = new node(3); root2.right = new node(7); root2.left.left = new node(2); root2.left.right = new node(4); root2.right.left = new node(6); root2.right.right = new node(8); int x = 23; if (existsPair(root1, root2, x)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of the approach // Node of the binary tree class node { constructor(data) { this.data = data; this.left = null; this.right = null; } } // Function that returns true if a pair // with given sum exists in the given BSTs function existsPair(root1,root2,x) { // Stack to store nodes for forward and backward // iterator let it1 =[], it2 = []; // Initializing forward iterator let c = root1; while (c != null) { it1.push(c); c = c.left; } // Initializing backward iterator c = root2; while (c != null) { it2.push(c); c = c.right; } // Two pointer technique while (it1.length > 0 && it2.length > 0) { // To store the value of the nodes // current iterators are pointing to let v1 = it1[it1.length-1].data, v2 = it2[it2.length-1].data; // If found a valid pair if (v1 + v2 == x) return true; // Moving forward iterator if (v1 + v2 < x) { c = it1[it1.length-1].right; it1.pop(); while (c != null) { it1.push(c); c = c.left; } } // Moving backward iterator else { c = it2[it2.length-1].left; it2.pop(); while (c != null) { it2.push(c); c = c.right; } } } // If no such pair found return false; } // Driver code // First BST let root1 = new node(11); root1.right = new node(15); // Second BST let root2 = new node(5); root2.left = new node(3); root2.right = new node(7); root2.left.left = new node(2); root2.left.right = new node(4); root2.right.left = new node(6); root2.right.right = new node(8); let x = 23; if (existsPair(root1, root2, x)) document.write("Yes"); else document.write("No"); // This code is contributed by patel2127 </script>
Yes
Complejidad temporal: O(N)
Espacio auxiliar : O(N)
Publicación traducida automáticamente
Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA