Encuentre el conjunto dominante mínimo de un árbol binario

Dado un árbol binario con N Nodes numerados [1, N] , la tarea es encontrar el tamaño del conjunto Dominante más pequeño de ese árbol.

Se dice que un conjunto de Nodes es un Node dominante si cada Node en el árbol binario que no está presente en el conjunto es un hijo/padre inmediato de cualquier Node en ese conjunto.

Ejemplos:

Input: 
                     1
                    /
                   2
                  / \
                 4   3
               /
              5
            /  \
           6    7
          / \    \
         8   9   10
Output:  3
Explanation: 
Smallest dominating set is {2, 6, 7}

Input: 
                     1
                   /   \
                  2     3
                 / \   / \
                4   5 6   7
               / \   /
              8  9  10
Output:  4
Explanation: 
One of the smallest
dominating set = {2, 3, 6, 4}

Enfoque: 
para resolver este problema, utilizamos un enfoque de programación dinámica al definir los siguientes dos estados para cada Node:

  • El primer estado obligatorio nos dice si es obligatorio elegir el Node del conjunto o no.
  • El segundo estado cubierto nos dice si el padre/hijo del Node está en el conjunto o no.

Si es obligatorio elegir el Node, lo elegimos y marcamos sus hijos como cubiertos. De lo contrario, tenemos la opción de elegirlo o rechazarlo y luego actualizar sus elementos secundarios como cubiertos o no según corresponda. Verifique los estados de cada Node y encuentre el tamaño requerido del conjunto en consecuencia.
El siguiente código es la implementación del enfoque anterior:

C++

/* C++ program to find the size of the
minimum dominating set of the tree */
 
#include <bits/stdc++.h>
using namespace std;
 
#define N 1005
 
// Definition of a tree node
struct Node {
    int data;
    Node *left, *right;
};
 
/* Helper function that allocates a
new node */
Node* newNode(int data)
{
    Node* node = new Node();
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
 
// DP array to precompute
// and store the results
int dp[N][5][5];
 
// minDominatingSettion to return the size of
// the minimum dominating set of the array
int minDominatingSet(Node* root, int covered,
                     int compulsory)
{
    // Base case
    if (!root)
        return 0;
 
    // Setting the compulsory value if needed
    if (!root->left and !root->right and !covered)
        compulsory = true;
 
    // Check if the answer is already computed
    if (dp[root->data][covered][compulsory] != -1)
        return dp[root->data][covered][compulsory];
 
    // If it is compulsory to select
    // the node
    if (compulsory) {
        // Choose the node and set its children as covered
        return dp[root->data]
                 [covered]
                 [compulsory]
               = 1
                 + minDominatingSet(
                       root->left, 1, 0)
                 + minDominatingSet(
                       root->right, 1, 0);
    }
 
    // If it is covered
    if (covered) {
        return dp[root->data]
                 [covered]
                 [compulsory]
               = min(
                   1
                       + minDominatingSet(
                             root->left, 1, 0)
                       + minDominatingSet(
                             root->right, 1, 0),
                   minDominatingSet(
                       root->left, 0, 0)
                       + minDominatingSet(
                             root->right, 0, 0));
    }
 
    // If the current node is neither covered nor
    // needs to be selected compulsorily
    int ans = 1
              + minDominatingSet(
                    root->left, 1, 0)
              + minDominatingSet(
                    root->right, 1, 0);
 
    if (root->left) {
        ans = min(ans,
                  minDominatingSet(
                      root->left, 0, 1)
                      + minDominatingSet(
                            root->right, 0, 0));
    }
    if (root->right) {
        ans = min(ans,
                  minDominatingSet(
                      root->left, 0, 0)
                      + minDominatingSet(
                            root->right, 0, 1));
    }
 
    // Store the result
    return dp[root->data]
             [covered]
             [compulsory]
           = ans;
}
 
// Driver code
signed main()
{
    // initialising the DP array
    memset(dp, -1, sizeof(dp));
 
    // Constructing the tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->left->left = newNode(3);
    root->left->right = newNode(4);
    root->left->left->left = newNode(5);
    root->left->left->left->left = newNode(6);
    root->left->left->left->right = newNode(7);
    root->left->left->left->right->right = newNode(10);
    root->left->left->left->left->left = newNode(8);
    root->left->left->left->left->right = newNode(9);
 
    cout << minDominatingSet(root, 0, 0) << endl;
 
    return 0;
}

Java

// Java program to find the size of the
//minimum dominating set of the tree
import java.util.*;
 
class GFG{
 
static final int N = 1005;
 
// Definition of a tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Helper function that allocates a
// new node
static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return node;
}
 
// DP array to precompute
// and store the results
static int [][][]dp = new int[N][5][5];
 
// minDominatingSettion to return the size of
// the minimum dominating set of the array
static int minDominatingSet(Node root,
                            int covered,
                            int compulsory)
{
    // Base case
    if (root == null)
        return 0;
     
    // Setting the compulsory value if needed
    if (root.left != null &&
       root.right != null &&
       covered > 0)
        compulsory = 1;
 
    // Check if the answer is already computed
    if (dp[root.data][covered][compulsory] != -1)
        return dp[root.data][covered][compulsory];
 
    // If it is compulsory to select
    // the node
    if (compulsory > 0)
    {
         
        // Choose the node and set its
        // children as covered
        return dp[root.data][covered][compulsory] = 1 +
                 minDominatingSet(root.left, 1, 0) +
                 minDominatingSet(root.right, 1, 0);
    }
 
    // If it is covered
    if (covered > 0)
    {
        return dp[root.data][covered]
                 [compulsory] = Math.min(1 +
                  minDominatingSet(root.left, 1, 0) +
                  minDominatingSet(root.right, 1, 0),
                  minDominatingSet(root.left, 0, 0)+
                  minDominatingSet(root.right, 0, 0));
    }
 
    // If the current node is neither covered nor
    // needs to be selected compulsorily
    int ans = 1 + minDominatingSet(root.left, 1, 0) +
                  minDominatingSet(root.right, 1, 0);
 
    if (root.left != null)
    {
        ans = Math.min(ans,
              minDominatingSet(root.left, 0, 1) +
              minDominatingSet(root.right, 0, 0));
    }
    if (root.right != null)
    {
        ans = Math.min(ans,
              minDominatingSet(root.left, 0, 0) +
              minDominatingSet(root.right, 0, 1));
    }
 
    // Store the result
    return dp[root.data][covered][compulsory] = ans;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Initialising the DP array
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < 5; j++)
        {
            for(int l = 0; l < 5; l++)
                dp[i][j][l] = -1;
        }
    }
 
    // Constructing the tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
 
    System.out.print(minDominatingSet(
        root, 0, 0) + "\n");
}
}
 
// This code is contributed by amal kumar choubey

Python3

# Python3 program to find the size of the
# minimum dominating set of the tree */
N = 1005
  
# Definition of a tree node
class Node:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
      
# Helper function that allocates a
# new node
def newNode(data):
 
    node = Node(data)
    return node
  
# DP array to precompute
# and store the results
dp = [[[-1 for i in range(5)] for j in range(5)] for k in range(N)];
  
# minDominatingSettion to return the size of
# the minimum dominating set of the array
def minDominatingSet(root, covered, compulsory):
 
    # Base case
    if (not root):
        return 0;
  
    # Setting the compulsory value if needed
    if (not root.left and not root.right and not covered):
        compulsory = True;
  
    # Check if the answer is already computed
    if (dp[root.data][covered][compulsory] != -1):
        return dp[root.data][covered][compulsory];
  
    # If it is compulsory to select
    # the node
    if (compulsory):
         
        dp[root.data][covered][compulsory] = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0);
         
        # Choose the node and set its children as covered
        return dp[root.data][covered][compulsory]
      
    # If it is covered
    if (covered):
        dp[root.data][covered][compulsory] = min(1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0),minDominatingSet(root.left, 0, 0)+ minDominatingSet(root.right, 0, 0));
        return dp[root.data][covered][compulsory]
      
    # If the current node is neither covered nor
    # needs to be selected compulsorily
    ans = 1 + minDominatingSet(root.left, 1, 0) + minDominatingSet(root.right, 1, 0);
  
    if (root.left):
        ans = min(ans, minDominatingSet(root.left, 0, 1) + minDominatingSet(root.right, 0, 0));
     
    if (root.right):
        ans = min(ans, minDominatingSet( root.left, 0, 0) + minDominatingSet(root.right, 0, 1));
      
    # Store the result
    dp[root.data][covered][compulsory]= ans;
    return ans
 
# Driver code
if __name__=='__main__':
      
    # Constructing the tree
    root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
  
    print(minDominatingSet(root, 0, 0))
   
  # This code is contributed by rutvik_56

C#

// C# program to find the size of the
//minimum dominating set of the tree
using System;
class GFG{
 
static readonly int N = 1005;
 
// Definition of a tree node
public class Node
{
    public
 int data;
    public
 Node left, right;
};
 
// Helper function that allocates a
// new node
public static Node newNode(int data)
{
    Node node = new Node();
    node.data = data;
    node.left = node.right = null;
    return node;
}
 
// DP array to precompute
// and store the results
static int [,,]dp = new int[N, 5, 5];
 
// minDominatingSettion to return the size of
// the minimum dominating set of the array
static int minDominatingSet(Node root,
                            int covered,
                            int compulsory)
{
    // Base case
    if (root == null)
        return 0;
     
    // Setting the compulsory value if needed
    if (root.left != null &&
       root.right != null &&
       covered > 0)
        compulsory = 1;
 
    // Check if the answer is already computed
    if (dp[root.data, covered, compulsory] != -1)
        return dp[root.data, covered, compulsory];
 
    // If it is compulsory to select
    // the node
    if (compulsory > 0)
    {
         
        // Choose the node and set its
        // children as covered
        return dp[root.data, covered, compulsory] = 1 +
                    minDominatingSet(root.left, 1, 0) +
                   minDominatingSet(root.right, 1, 0);
    }
 
    // If it is covered
    if (covered > 0)
    {
        return dp[root.data, covered, compulsory] = Math.Min(1 +
                             minDominatingSet(root.left, 1, 0) +
                             minDominatingSet(root.right, 1, 0),
                             minDominatingSet(root.left, 0, 0)+
                            minDominatingSet(root.right, 0, 0));
    }
 
    // If the current node is neither covered nor
    // needs to be selected compulsorily
    int ans = 1 + minDominatingSet(root.left, 1, 0) +
                  minDominatingSet(root.right, 1, 0);
 
    if (root.left != null)
    {
        ans = Math.Min(ans,
              minDominatingSet(root.left, 0, 1) +
              minDominatingSet(root.right, 0, 0));
    }
    if (root.right != null)
    {
        ans = Math.Min(ans,
              minDominatingSet(root.left, 0, 0) +
              minDominatingSet(root.right, 0, 1));
    }
 
    // Store the result
    return dp[root.data, covered, compulsory] = ans;
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Initialising the DP array
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < 5; j++)
        {
            for(int l = 0; l < 5; l++)
                dp[i, j, l] = -1;
        }
    }
 
    // Constructing the tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
 
    Console.Write(minDominatingSet
                  root, 0, 0) + "\n");
}
}
 
// This code is contributed by Rohit_ranjan

Javascript

<script>
 
    // JavaScript program to find the size of the
    //minimum dominating set of the tree
     
    let N = 1005;
  
    // Definition of a tree node
    class Node
    {
       constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Helper function that allocates a
    // new node
    function newNode(data)
    {
        let node = new Node(data);
        return node;
    }
 
    // DP array to precompute
    // and store the results
    let dp = new Array(N);
 
    // minDominatingSettion to return the size of
    // the minimum dominating set of the array
    function minDominatingSet(root, covered, compulsory)
    {
        // Base case
        if (root == null)
            return 0;
 
        // Setting the compulsory value if needed
        if (root.left != null &&
           root.right != null &&
           covered > 0)
            compulsory = 1;
 
        // Check if the answer is already computed
        if (dp[root.data][covered][compulsory] != -1)
            return dp[root.data][covered][compulsory];
 
        // If it is compulsory to select
        // the node
        if (compulsory > 0)
        {
 
            // Choose the node and set its
            // children as covered
            return dp[root.data][covered][compulsory] = 1 +
                     minDominatingSet(root.left, 1, 0) +
                     minDominatingSet(root.right, 1, 0);
        }
 
        // If it is covered
        if (covered > 0)
        {
            return dp[root.data][covered]
                     [compulsory] = Math.min(1 +
                      minDominatingSet(root.left, 1, 0) +
                      minDominatingSet(root.right, 1, 0),
                      minDominatingSet(root.left, 0, 0)+
                      minDominatingSet(root.right, 0, 0));
        }
 
        // If the current node is neither covered nor
        // needs to be selected compulsorily
        let ans = 1 + minDominatingSet(root.left, 1, 0) +
                      minDominatingSet(root.right, 1, 0);
 
        if (root.left != null)
        {
            ans = Math.min(ans,
                  minDominatingSet(root.left, 0, 1) +
                  minDominatingSet(root.right, 0, 0));
        }
        if (root.right != null)
        {
            ans = Math.min(ans,
                  minDominatingSet(root.left, 0, 0) +
                  minDominatingSet(root.right, 0, 1));
        }
 
        // Store the result
        dp[root.data][covered][compulsory] = ans;
        return dp[root.data][covered][compulsory];
    }
     
    // Initialising the DP array
    for(let i = 0; i < N; i++)
    {
        dp[i] = new Array(5);
        for(let j = 0; j < 5; j++)
        {
            dp[i][j] = new Array(5);
            for(let l = 0; l < 5; l++)
                dp[i][j][l] = -1;
        }
    }
  
    // Constructing the tree
    let root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(3);
    root.left.right = newNode(4);
    root.left.left.left = newNode(5);
    root.left.left.left.left = newNode(6);
    root.left.left.left.right = newNode(7);
    root.left.left.left.right.right = newNode(10);
    root.left.left.left.left.left = newNode(8);
    root.left.left.left.left.right = newNode(9);
  
    document.write(minDominatingSet(root, 0, 0));
             
</script>
Producción: 

3

 

Complejidad temporal: O(N) 
Espacio auxiliar: O(N) 

Publicación traducida automáticamente

Artículo escrito por Shrey Tanna y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *