Dada una string binaria grande str y un entero K , la tarea es encontrar el valor de str %K .
Ejemplos:
Entrada: str = “1101”, K = 45
Salida: 13
decimal(1101) % 45 = 13 % 45 = 13
Entrada: str = “11010101”, K = 112
Salida: 101
decimal(11010101) % 112 = 213 % 112 = 101
Enfoque: Se sabe que (str % K) donde str es una string binaria se puede escribir como ((str[n – 1] * 2 0 ) + (str[n – 2] * 2 1 ) + … + (str [0] * 2 n – 1 )) % K que a su vez se puede escribir como (((str[n – 1] * 2 0 ) % K) + ((str[n – 2] * 2 1 ) % K ) + … + ((str[0] * 2 n – 1 )) % K) % K . Esto se puede usar para encontrar la respuesta requerida sin convertir realmente la string binaria dada a su equivalente decimal.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the value of (str % k) int getMod(string str, int n, int k) { // pwrTwo[i] will store ((2^i) % k) int pwrTwo[n]; pwrTwo[0] = 1 % k; for (int i = 1; i < n; i++) { pwrTwo[i] = pwrTwo[i - 1] * (2 % k); pwrTwo[i] %= k; } // To store the result int res = 0; int i = 0, j = n - 1; while (i < n) { // If current bit is 1 if (str[j] == '1') { // Add the current power of 2 res += (pwrTwo[i]); res %= k; } i++; j--; } return res; } // Driver code int main() { string str = "1101"; int n = str.length(); int k = 45; cout << getMod(str, n, k) << endl; } // This code is contributed by ashutosh450
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the value of (str % k) static int getMod(String str, int n, int k) { // pwrTwo[i] will store ((2^i) % k) int pwrTwo[] = new int[n]; pwrTwo[0] = 1 % k; for (int i = 1; i < n; i++) { pwrTwo[i] = pwrTwo[i - 1] * (2 % k); pwrTwo[i] %= k; } // To store the result int res = 0; int i = 0, j = n - 1; while (i < n) { // If current bit is 1 if (str.charAt(j) == '1') { // Add the current power of 2 res += (pwrTwo[i]); res %= k; } i++; j--; } return res; } // Driver code public static void main(String[] args) { String str = "1101"; int n = str.length(); int k = 45; System.out.print(getMod(str, n, k)); } }
Python3
# Python3 implementation of the approach # Function to return the value of (str % k) def getMod(_str, n, k) : # pwrTwo[i] will store ((2^i) % k) pwrTwo = [0] * n pwrTwo[0] = 1 % k for i in range(1, n): pwrTwo[i] = pwrTwo[i - 1] * (2 % k) pwrTwo[i] %= k # To store the result res = 0 i = 0 j = n - 1 while (i < n) : # If current bit is 1 if (_str[j] == '1') : # Add the current power of 2 res += (pwrTwo[i]) res %= k i += 1 j -= 1 return res # Driver code _str = "1101" n = len(_str) k = 45 print(getMod(_str, n, k)) # This code is contributed by # divyamohan123
C#
// C# implementation of the above approach using System; class GFG { // Function to return the value of (str % k) static int getMod(string str, int n, int k) { int i; // pwrTwo[i] will store ((2^i) % k) int []pwrTwo = new int[n]; pwrTwo[0] = 1 % k; for (i = 1; i < n; i++) { pwrTwo[i] = pwrTwo[i - 1] * (2 % k); pwrTwo[i] %= k; } // To store the result int res = 0; i = 0; int j = n - 1; while (i < n) { // If current bit is 1 if (str[j] == '1') { // Add the current power of 2 res += (pwrTwo[i]); res %= k; } i++; j--; } return res; } // Driver code public static void Main() { string str = "1101"; int n = str.Length; int k = 45; Console.Write(getMod(str, n, k)); } } // This code is contributed by AnkitRai01
Javascript
<script> // Javascript implementation of the approach // Function to return the value of (str % k) function getMod(str, n, k) { // pwrTwo[i] will store ((2^i) % k) var pwrTwo = Array(n); pwrTwo[0] = 1 % k; for (var i = 1; i < n; i++) { pwrTwo[i] = pwrTwo[i - 1] * (2 % k); pwrTwo[i] %= k; } // To store the result var res = 0; var i = 0, j = n - 1; while (i < n) { // If current bit is 1 if (str[j] == '1') { // Add the current power of 2 res += (pwrTwo[i]); res %= k; } i++; j--; } return res; } // Driver code var str = "1101"; var n = str.length; var k = 45; document.write( getMod(str, n, k)); </script>
13