En Pandas, tenemos la libertad de agregar columnas en el marco de datos cuando sea necesario. Hay varias formas de agregar columnas al marco de datos de Pandas.
Método 1: Agregar múltiples columnas a un marco de datos usando Listas
Python3
# importing pandas library import pandas as pd # creating and initializing a nested list students = [['jackma', 34, 'Sydeny', 'Australia'], ['Ritika', 30, 'Delhi', 'India'], ['Vansh', 31, 'Delhi', 'India'], ['Nany', 32, 'Tokyo', 'Japan'], ['May', 16, 'New York', 'US'], ['Michael', 17, 'las vegas', 'US']] # Create a DataFrame object df = pd.DataFrame(students, columns=['Name', 'Age', 'City', 'Country'], index=['a', 'b', 'c', 'd', 'e', 'f']) # Creating 2 lists 'marks' and 'gender' marks = [85.4,94.9,55.2,100.0,40.5,33.5] gender = ['M','F','M','F','F','M'] # adding lists as new column to dataframe df df['Uni_Marks'] = marks df['Gender'] = gender # Displaying the Data frame df
Producción :
Método 2: agregue varias columnas a un marco de datos utilizando el método Dataframe.assign()
Python3
# importing pandas library import pandas as pd # creating and initializing a nested list students = [['jackma', 34, 'Sydeny', 'Australia'], ['Ritika', 30, 'Delhi', 'India'], ['Vansh', 31, 'Delhi', 'India'], ['Nany', 32, 'Tokyo', 'Japan'], ['May', 16, 'New York', 'US'], ['Michael', 17, 'las vegas', 'US']] # Create a DataFrame object df = pd.DataFrame(students, columns=['Name', 'Age', 'City', 'Country'], index=['a', 'b', 'c', 'd', 'e', 'f']) # creating columns 'Admissionnum' and 'Percentage' # using dataframe.assign() function df = df.assign(Admissionnum=[250, 800, 1200, 300, 400, 700], Percentage=['85%', '90%', '75%', '35%', '60%', '80%']) # Displaying the Data frame df
Producción :
Método 3: agregue varias columnas a un marco de datos utilizando el método Dataframe.insert()
Python3
# importing pandas library import pandas as pd # creating and initializing a nested list students = [['jackma', 34, 'Sydeny', 'Australia'], ['Ritika', 30, 'Delhi', 'India'], ['Vansh', 31, 'Delhi', 'India'], ['Nany', 32, 'Tokyo', 'Japan'], ['May', 16, 'New York', 'US'], ['Michael', 17, 'las vegas', 'US']] # Create a DataFrame object df = pd.DataFrame(students, columns=['Name', 'Age', 'City', 'Country'], index=['a', 'b', 'c', 'd', 'e', 'f']) # creating columns 'Age' and 'ID' at # 2nd and 3rd position using # dataframe.insert() function df.insert(2, "Marks", [90, 70, 45, 33, 88, 77], True) df.insert(3, "ID", [101, 201, 401, 303, 202, 111], True) # Displaying the Data frame df
Producción :
Método 4: Agregue múltiples columnas a un marco de datos usando Dictionary y zip()
Python3
# importing pandas library import pandas as pd # creating and initializing a nested list students = [['jackma', 34, 'Sydeny', 'Australia'], ['Ritika', 30, 'Delhi', 'India'], ['Vansh', 31, 'Delhi', 'India'], ['Nany', 32, 'Tokyo', 'Japan'], ['May', 16, 'New York', 'US'], ['Michael', 17, 'las vegas', 'US']] # Create a DataFrame object df = pd.DataFrame(students, columns=['Name', 'Age', 'City', 'Country'], index=['a', 'b', 'c', 'd', 'e', 'f']) # creating 2 lists 'ids' and 'marks' ids = [11, 12, 13, 14, 15, 16] marks=[85,41,77,57,20,95,96] # Creating columns 'ID' and 'Uni_marks' # using Dictionary and zip() df['ID'] = dict(zip(ids, df['Name'])) df['Uni_Marks'] = dict(zip(marks, df['Name'])) # Displaying the Data frame df
Producción :
Publicación traducida automáticamente
Artículo escrito por vanshgaur14866 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA