Dado un texto de entrada y una array de k palabras, arr[], encuentre todas las apariciones de todas las palabras en el texto de entrada. Sea n la longitud del texto ym el número total de caracteres en todas las palabras, es decir, m = longitud(arr[0]) + longitud(arr[1]) + … + longitud(arr[k-1]). Aquí k es el número total de palabras de entrada.
Ejemplo:
Input: text = "ahishers" arr[] = {"he", "she", "hers", "his"} Output: Word his appears from 1 to 3 Word he appears from 4 to 5 Word she appears from 3 to 5 Word hers appears from 4 to 7
Si usamos un algoritmo de búsqueda de tiempo lineal como KMP , entonces necesitamos buscar una por una todas las palabras en text[]. Esto nos da la complejidad temporal total como O(n + longitud(palabra[0]) + O(n + longitud(palabra[1]) + O(n + longitud(palabra[2]) + … O(n + longitud( word[k-1]). Esta complejidad de tiempo se puede escribir como O(n*k + m) .
El algoritmo de Aho-Corasick encuentra todas las palabras en tiempo O (n + m + z) , donde z es el número total de ocurrencias de palabras en el texto. El algoritmo de coincidencia de strings Aho-Corasick formó la base del comando fgrep original de Unix.
- Preprocesamiento: construye un autómata de todas las palabras en arr[] El autómata tiene principalmente tres funciones:
Go To : This function simply follows edges of Trie of all words in arr[]. It is represented as 2D array g[][] where we store next state for current state and character. Failure : This function stores all edges that are followed when current character doesn't have edge in Trie. It is represented as 1D array f[] where we store next state for current state. Output : Stores indexes of all words that end at current state. It is represented as 1D array o[] where we store indexes of all matching words as a bitmap for current state.
- Emparejamiento: recorre el texto dado sobre un autómata construido para encontrar todas las palabras coincidentes.
Preprocesamiento:
- Primero construimos un Trie (o árbol de palabras clave) de todas las palabras.
- Esta parte llena entradas en goto g[][] y salida o[].
- A continuación, ampliamos Trie a un autómata para admitir la coincidencia de tiempo lineal.
- Esta parte llena las entradas en falla f[] y salida o[].
Ir a:
Construimos Trie . Y para todos los caracteres que no tienen una arista en la raíz, añadimos una arista de regreso a la raíz.
Fallo:
para un estado s, encontramos el sufijo propio más largo que es un prefijo propio de algún patrón. Esto se hace usando Breadth First Traversal of Trie.
Salida:
para un estado s, se almacenan índices de todas las palabras que terminan en s. Estos índices se almacenan como mapa bit a bit (haciendo OR bit a bit de valores). Esto también es computación usando Breadth First Traversal with Failure.
A continuación se muestra la implementación del algoritmo Aho-Corasick
C++
// C++ program for implementation of Aho Corasick algorithm // for string matching using namespace std; #include <bits/stdc++.h> // Max number of states in the matching machine. // Should be equal to the sum of the length of all keywords. const int MAXS = 500; // Maximum number of characters in input alphabet const int MAXC = 26; // OUTPUT FUNCTION IS IMPLEMENTED USING out[] // Bit i in this mask is one if the word with index i // appears when the machine enters this state. int out[MAXS]; // FAILURE FUNCTION IS IMPLEMENTED USING f[] int f[MAXS]; // GOTO FUNCTION (OR TRIE) IS IMPLEMENTED USING g[][] int g[MAXS][MAXC]; // Builds the string matching machine. // arr - array of words. The index of each keyword is important: // "out[state] & (1 << i)" is > 0 if we just found word[i] // in the text. // Returns the number of states that the built machine has. // States are numbered 0 up to the return value - 1, inclusive. int buildMatchingMachine(string arr[], int k) { // Initialize all values in output function as 0. memset(out, 0, sizeof out); // Initialize all values in goto function as -1. memset(g, -1, sizeof g); // Initially, we just have the 0 state int states = 1; // Construct values for goto function, i.e., fill g[][] // This is same as building a Trie for arr[] for (int i = 0; i < k; ++i) { const string &word = arr[i]; int currentState = 0; // Insert all characters of current word in arr[] for (int j = 0; j < word.size(); ++j) { int ch = word[j] - 'a'; // Allocate a new node (create a new state) if a // node for ch doesn't exist. if (g[currentState][ch] == -1) g[currentState][ch] = states++; currentState = g[currentState][ch]; } // Add current word in output function out[currentState] |= (1 << i); } // For all characters which don't have an edge from // root (or state 0) in Trie, add a goto edge to state // 0 itself for (int ch = 0; ch < MAXC; ++ch) if (g[0][ch] == -1) g[0][ch] = 0; // Now, let's build the failure function // Initialize values in fail function memset(f, -1, sizeof f); // Failure function is computed in breadth first order // using a queue queue<int> q; // Iterate over every possible input for (int ch = 0; ch < MAXC; ++ch) { // All nodes of depth 1 have failure function value // as 0. For example, in above diagram we move to 0 // from states 1 and 3. if (g[0][ch] != 0) { f[g[0][ch]] = 0; q.push(g[0][ch]); } } // Now queue has states 1 and 3 while (q.size()) { // Remove the front state from queue int state = q.front(); q.pop(); // For the removed state, find failure function for // all those characters for which goto function is // not defined. for (int ch = 0; ch <= MAXC; ++ch) { // If goto function is defined for character 'ch' // and 'state' if (g[state][ch] != -1) { // Find failure state of removed state int failure = f[state]; // Find the deepest node labeled by proper // suffix of string from root to current // state. while (g[failure][ch] == -1) failure = f[failure]; failure = g[failure][ch]; f[g[state][ch]] = failure; // Merge output values out[g[state][ch]] |= out[failure]; // Insert the next level node (of Trie) in Queue q.push(g[state][ch]); } } } return states; } // Returns the next state the machine will transition to using goto // and failure functions. // currentState - The current state of the machine. Must be between // 0 and the number of states - 1, inclusive. // nextInput - The next character that enters into the machine. int findNextState(int currentState, char nextInput) { int answer = currentState; int ch = nextInput - 'a'; // If goto is not defined, use failure function while (g[answer][ch] == -1) answer = f[answer]; return g[answer][ch]; } // This function finds all occurrences of all array words // in text. void searchWords(string arr[], int k, string text) { // Preprocess patterns. // Build machine with goto, failure and output functions buildMatchingMachine(arr, k); // Initialize current state int currentState = 0; // Traverse the text through the built machine to find // all occurrences of words in arr[] for (int i = 0; i < text.size(); ++i) { currentState = findNextState(currentState, text[i]); // If match not found, move to next state if (out[currentState] == 0) continue; // Match found, print all matching words of arr[] // using output function. for (int j = 0; j < k; ++j) { if (out[currentState] & (1 << j)) { cout << "Word " << arr[j] << " appears from " << i - arr[j].size() + 1 << " to " << i << endl; } } } } // Driver program to test above int main() { string arr[] = {"he", "she", "hers", "his"}; string text = "ahishers"; int k = sizeof(arr)/sizeof(arr[0]); searchWords(arr, k, text); return 0; }
Java
// Java program for implementation of // Aho Corasick algorithm for String // matching import java.util.*; class GFG{ // Max number of states in the matching // machine. Should be equal to the sum // of the length of all keywords. static int MAXS = 500; // Maximum number of characters // in input alphabet static int MAXC = 26; // OUTPUT FUNCTION IS IMPLEMENTED USING out[] // Bit i in this mask is one if the word with // index i appears when the machine enters // this state. static int []out = new int[MAXS]; // FAILURE FUNCTION IS IMPLEMENTED USING f[] static int []f = new int[MAXS]; // GOTO FUNCTION (OR TRIE) IS // IMPLEMENTED USING g[][] static int [][]g = new int[MAXS][MAXC]; // Builds the String matching machine. // arr - array of words. The index of each keyword is important: // "out[state] & (1 << i)" is > 0 if we just found word[i] // in the text. // Returns the number of states that the built machine has. // States are numbered 0 up to the return value - 1, inclusive. static int buildMatchingMachine(String arr[], int k) { // Initialize all values in output function as 0. Arrays.fill(out, 0); // Initialize all values in goto function as -1. for(int i = 0; i < MAXS; i++) Arrays.fill(g[i], -1); // Initially, we just have the 0 state int states = 1; // Convalues for goto function, i.e., fill g[][] // This is same as building a Trie for arr[] for(int i = 0; i < k; ++i) { String word = arr[i]; int currentState = 0; // Insert all characters of current // word in arr[] for(int j = 0; j < word.length(); ++j) { int ch = word.charAt(j) - 'a'; // Allocate a new node (create a new state) // if a node for ch doesn't exist. if (g[currentState][ch] == -1) g[currentState][ch] = states++; currentState = g[currentState][ch]; } // Add current word in output function out[currentState] |= (1 << i); } // For all characters which don't have // an edge from root (or state 0) in Trie, // add a goto edge to state 0 itself for(int ch = 0; ch < MAXC; ++ch) if (g[0][ch] == -1) g[0][ch] = 0; // Now, let's build the failure function // Initialize values in fail function Arrays.fill(f, -1); // Failure function is computed in // breadth first order // using a queue Queue<Integer> q = new LinkedList<>(); // Iterate over every possible input for(int ch = 0; ch < MAXC; ++ch) { // All nodes of depth 1 have failure // function value as 0. For example, // in above diagram we move to 0 // from states 1 and 3. if (g[0][ch] != 0) { f[g[0][ch]] = 0; q.add(g[0][ch]); } } // Now queue has states 1 and 3 while (!q.isEmpty()) { // Remove the front state from queue int state = q.peek(); q.remove(); // For the removed state, find failure // function for all those characters // for which goto function is // not defined. for(int ch = 0; ch < MAXC; ++ch) { // If goto function is defined for // character 'ch' and 'state' if (g[state][ch] != -1) { // Find failure state of removed state int failure = f[state]; // Find the deepest node labeled by proper // suffix of String from root to current // state. while (g[failure][ch] == -1) failure = f[failure]; failure = g[failure][ch]; f[g[state][ch]] = failure; // Merge output values out[g[state][ch]] |= out[failure]; // Insert the next level node // (of Trie) in Queue q.add(g[state][ch]); } } } return states; } // Returns the next state the machine will transition to using goto // and failure functions. // currentState - The current state of the machine. Must be between // 0 and the number of states - 1, inclusive. // nextInput - The next character that enters into the machine. static int findNextState(int currentState, char nextInput) { int answer = currentState; int ch = nextInput - 'a'; // If goto is not defined, use // failure function while (g[answer][ch] == -1) answer = f[answer]; return g[answer][ch]; } // This function finds all occurrences of // all array words in text. static void searchWords(String arr[], int k, String text) { // Preprocess patterns. // Build machine with goto, failure // and output functions buildMatchingMachine(arr, k); // Initialize current state int currentState = 0; // Traverse the text through the // built machine to find all // occurrences of words in arr[] for(int i = 0; i < text.length(); ++i) { currentState = findNextState(currentState, text.charAt(i)); // If match not found, move to next state if (out[currentState] == 0) continue; // Match found, print all matching // words of arr[] // using output function. for(int j = 0; j < k; ++j) { if ((out[currentState] & (1 << j)) > 0) { System.out.print("Word " + arr[j] + " appears from " + (i - arr[j].length() + 1) + " to " + i + "\n"); } } } } // Driver code public static void main(String[] args) { String arr[] = { "he", "she", "hers", "his" }; String text = "ahishers"; int k = arr.length; searchWords(arr, k, text); } } // This code is contributed by Princi Singh
Python3
# Python program for implementation of # Aho-Corasick algorithm for string matching # defaultdict is used only for storing the final output # We will return a dictionary where key is the matched word # and value is the list of indexes of matched word from collections import defaultdict # For simplicity, Arrays and Queues have been implemented using lists. # If you want to improve performance try using them instead class AhoCorasick: def __init__(self, words): # Max number of states in the matching machine. # Should be equal to the sum of the length of all keywords. self.max_states = sum([len(word) for word in words]) # Maximum number of characters. # Currently supports only alphabets [a,z] self.max_characters = 26 # OUTPUT FUNCTION IS IMPLEMENTED USING out [] # Bit i in this mask is 1 if the word with # index i appears when the machine enters this state. # Lets say, a state outputs two words "he" and "she" and # in our provided words list, he has index 0 and she has index 3 # so value of out[state] for this state will be 1001 # It has been initialized to all 0. # We have taken one extra state for the root. self.out = [0]*(self.max_states+1) # FAILURE FUNCTION IS IMPLEMENTED USING fail [] # There is one value for each state + 1 for the root # It has been initialized to all -1 # This will contain the fail state value for each state self.fail = [-1]*(self.max_states+1) # GOTO FUNCTION (OR TRIE) IS IMPLEMENTED USING goto [[]] # Number of rows = max_states + 1 # Number of columns = max_characters i.e 26 in our case # It has been initialized to all -1. self.goto = [[-1]*self.max_characters for _ in range(self.max_states+1)] # Convert all words to lowercase # so that our search is case insensitive for i in range(len(words)): words[i] = words[i].lower() # All the words in dictionary which will be used to create Trie # The index of each keyword is important: # "out[state] & (1 << i)" is > 0 if we just found word[i] # in the text. self.words = words # Once the Trie has been built, it will contain the number # of nodes in Trie which is total number of states required <= max_states self.states_count = self.__build_matching_machine() # Builds the String matching machine. # Returns the number of states that the built machine has. # States are numbered 0 up to the return value - 1, inclusive. def __build_matching_machine(self): k = len(self.words) # Initially, we just have the 0 state states = 1 # Convalues for goto function, i.e., fill goto # This is same as building a Trie for words[] for i in range(k): word = self.words[i] current_state = 0 # Process all the characters of the current word for character in word: ch = ord(character) - 97 # Ascii value of 'a' = 97 # Allocate a new node (create a new state) # if a node for ch doesn't exist. if self.goto[current_state][ch] == -1: self.goto[current_state][ch] = states states += 1 current_state = self.goto[current_state][ch] # Add current word in output function self.out[current_state] |= (1<<i) # For all characters which don't have # an edge from root (or state 0) in Trie, # add a goto edge to state 0 itself for ch in range(self.max_characters): if self.goto[0][ch] == -1: self.goto[0][ch] = 0 # Failure function is computed in # breadth first order using a queue queue = [] # Iterate over every possible input for ch in range(self.max_characters): # All nodes of depth 1 have failure # function value as 0. For example, # in above diagram we move to 0 # from states 1 and 3. if self.goto[0][ch] != 0: self.fail[self.goto[0][ch]] = 0 queue.append(self.goto[0][ch]) # Now queue has states 1 and 3 while queue: # Remove the front state from queue state = queue.pop(0) # For the removed state, find failure # function for all those characters # for which goto function is not defined. for ch in range(self.max_characters): # If goto function is defined for # character 'ch' and 'state' if self.goto[state][ch] != -1: # Find failure state of removed state failure = self.fail[state] # Find the deepest node labeled by proper # suffix of String from root to current state. while self.goto[failure][ch] == -1: failure = self.fail[failure] failure = self.goto[failure][ch] self.fail[self.goto[state][ch]] = failure # Merge output values self.out[self.goto[state][ch]] |= self.out[failure] # Insert the next level node (of Trie) in Queue queue.append(self.goto[state][ch]) return states # Returns the next state the machine will transition to using goto # and failure functions. # current_state - The current state of the machine. Must be between # 0 and the number of states - 1, inclusive. # next_input - The next character that enters into the machine. def __find_next_state(self, current_state, next_input): answer = current_state ch = ord(next_input) - 97 # Ascii value of 'a' is 97 # If goto is not defined, use # failure function while self.goto[answer][ch] == -1: answer = self.fail[answer] return self.goto[answer][ch] # This function finds all occurrences of all words in text. def search_words(self, text): # Convert the text to lowercase to make search case insensitive text = text.lower() # Initialize current_state to 0 current_state = 0 # A dictionary to store the result. # Key here is the found word # Value is a list of all occurrences start index result = defaultdict(list) # Traverse the text through the built machine # to find all occurrences of words for i in range(len(text)): current_state = self.__find_next_state(current_state, text[i]) # If match not found, move to next state if self.out[current_state] == 0: continue # Match found, store the word in result dictionary for j in range(len(self.words)): if (self.out[current_state] & (1<<j)) > 0: word = self.words[j] # Start index of word is (i-len(word)+1) result[word].append(i-len(word)+1) # Return the final result dictionary return result # Driver code if __name__ == "__main__": words = ["he", "she", "hers", "his"] text = "ahishers" # Create an Object to initialize the Trie aho_chorasick = AhoCorasick(words) # Get the result result = aho_chorasick.search_words(text) # Print the result for word in result: for i in result[word]: print("Word", word, "appears from", i, "to", i+len(word)-1) # This code is contributed by Md Azharuddin
C#
// C# program for implementation of // Aho Corasick algorithm for String // matching using System; using System.Collections.Generic; class GFG{ // Max number of states in the matching // machine. Should be equal to the sum // of the length of all keywords. static int MAXS = 500; // Maximum number of characters // in input alphabet static int MAXC = 26; // OUTPUT FUNCTION IS IMPLEMENTED USING out[] // Bit i in this mask is one if the word with // index i appears when the machine enters // this state. static int[] out = new int[MAXS]; // FAILURE FUNCTION IS IMPLEMENTED USING f[] static int[] f = new int[MAXS]; // GOTO FUNCTION (OR TRIE) IS // IMPLEMENTED USING g[,] static int[,] g = new int[MAXS, MAXC]; // Builds the String matching machine. // arr - array of words. The index of each keyword is // important: // "out[state] & (1 << i)" is > 0 if we just // found word[i] in the text. // Returns the number of states that the built machine // has. States are numbered 0 up to the return value - // 1, inclusive. static int buildMatchingMachine(String[] arr, int k) { // Initialize all values in output function as 0. for(int i = 0; i < outt.Length; i++) outt[i] = 0; // Initialize all values in goto function as -1. for(int i = 0; i < MAXS; i++) for(int j = 0; j < MAXC; j++) g[i, j] = -1; // Initially, we just have the 0 state int states = 1; // Convalues for goto function, i.e., fill g[,] // This is same as building a Trie for []arr for(int i = 0; i < k; ++i) { String word = arr[i]; int currentState = 0; // Insert all characters of current // word in []arr for(int j = 0; j < word.Length; ++j) { int ch = word[j] - 'a'; // Allocate a new node (create a new state) // if a node for ch doesn't exist. if (g[currentState, ch] == -1) g[currentState, ch] = states++; currentState = g[currentState, ch]; } // Add current word in output function outt[currentState] |= (1 << i); } // For all characters which don't have // an edge from root (or state 0) in Trie, // add a goto edge to state 0 itself for(int ch = 0; ch < MAXC; ++ch) if (g[0, ch] == -1) g[0, ch] = 0; // Now, let's build the failure function // Initialize values in fail function for(int i = 0; i < MAXC; i++) f[i] = 0; // Failure function is computed in // breadth first order // using a queue Queue<int> q = new Queue<int>(); // Iterate over every possible input for(int ch = 0; ch < MAXC; ++ch) { // All nodes of depth 1 have failure // function value as 0. For example, // in above diagram we move to 0 // from states 1 and 3. if (g[0, ch] != 0) { f[g[0, ch]] = 0; q.Enqueue(g[0, ch]); } } // Now queue has states 1 and 3 while (q.Count != 0) { // Remove the front state from queue int state = q.Peek(); q.Dequeue(); // For the removed state, find failure // function for all those characters // for which goto function is // not defined. for(int ch = 0; ch < MAXC; ++ch) { // If goto function is defined for // character 'ch' and 'state' if (g[state, ch] != -1) { // Find failure state of removed state int failure = f[state]; // Find the deepest node labeled by // proper suffix of String from root to // current state. while (g[failure, ch] == -1) failure = f[failure]; failure = g[failure, ch]; f[g[state, ch]] = failure; // Merge output values outt[g[state, ch]] |= outt[failure]; // Insert the next level node // (of Trie) in Queue q.Enqueue(g[state, ch]); } } } return states; } // Returns the next state the machine will transition to // using goto and failure functions. currentState - The // current state of the machine. Must be between // 0 and the number of states - 1, // inclusive. // nextInput - The next character that enters into the // machine. static int findNextState(int currentState, char nextInput) { int answer = currentState; int ch = nextInput - 'a'; // If goto is not defined, use // failure function while (g[answer, ch] == -1) answer = f[answer]; return g[answer, ch]; } // This function finds all occurrences of // all array words in text. static void searchWords(String[] arr, int k, String text) { // Preprocess patterns. // Build machine with goto, failure // and output functions buildMatchingMachine(arr, k); // Initialize current state int currentState = 0; // Traverse the text through the // built machine to find all // occurrences of words in []arr for(int i = 0; i < text.Length; ++i) { currentState = findNextState(currentState, text[i]); // If match not found, move to next state if (outt[currentState] == 0) continue; // Match found, print all matching // words of []arr // using output function. for(int j = 0; j < k; ++j) { if ((outt[currentState] & (1 << j)) > 0) { Console.Write("Word " + arr[j] + " appears from " + (i - arr[j].Length + 1) + " to " + i + "\n"); } } } } // Driver code public static void Main(String[] args) { String[] arr = { "he", "she", "hers", "his" }; String text = "ahishers"; int k = arr.Length; searchWords(arr, k, text); } } // This code is contributed by Amit Katiyar
Word his appears from 1 to 3 Word he appears from 4 to 5 Word she appears from 3 to 5 Word hers appears from 4 to 7
Complejidad temporal: O(n + l + z), donde ‘n’ es la longitud del texto, ‘l’ es la longitud de las palabras clave y ‘z’ es el número de coincidencias.
Espacio Auxiliar: O(l * q), donde ‘q’ es la longitud del alfabeto ya que ese es el número máximo de hijos que puede tener un Node.
Fuente:
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/slides04.pdf
Este artículo es una contribución de Ayush Govil . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA