En la publicación anterior , presentamos el algoritmo de búsqueda de unión y lo usamos para detectar el ciclo en un gráfico. Usamos las siguientes operaciones union() y find() para subconjuntos.
C++
// Naive implementation of find int find(int parent[], int i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } // Naive implementation of union() void Union(int parent[], int x, int y) { int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; }
Java
// Naive implementation of find static int find(int parent[], int i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } // Naive implementation of union() static void Union(int parent[], int x, int y) { int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; } // This code is contributed by divyesh072019
Python3
# Naive implementation of find def find(parent, i): if (parent[i] == -1): return i return find(parent, parent[i]) # Naive implementation of union() def Union(parent, x, y): xset = find(parent, x) yset = find(parent, y) parent[xset] = yset # This code is contributed by rutvik_56
C#
// Naive implementation of find static int find(int []parent, int i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } // Naive implementation of union() static void Union(int []parent, int x, int y) { int xset = find(parent, x); int yset = find(parent, y); parent[xset] = yset; } // This code is contributed by pratham76
Javascript
<script> // Naive implementation of find function find(parent, i) { if (parent[i] == -1) return i; return find(parent, parent[i]); } // Naive implementation of union() function Union(parent, x, y) { let xset = find(parent, x); let yset = find(parent, y); parent[xset] = yset; } <script>
Los anteriores union() y find() son ingenuos y, en el peor de los casos, la complejidad del tiempo es lineal. Los árboles creados para representar subconjuntos pueden estar sesgados y convertirse en una lista enlazada. A continuación se muestra un ejemplo del peor de los casos.
Let there be 4 elements 0, 1, 2, 3 Initially, all elements are single element subsets. 0 1 2 3 Do Union(0, 1) 1 2 3 / 0 Do Union(1, 2) 2 3 / 1 / 0 Do Union(2, 3) 3 / 2 / 1 / 0
Las operaciones anteriores se pueden optimizar a O (Log n) en el peor de los casos. La idea es colocar siempre un árbol de menor profundidad debajo de la raíz del árbol más profundo. Esta técnica se llama unión por rango . Se prefiere el término rango en lugar de altura porque si se usa la técnica de compresión de caminos (la discutimos más adelante), entonces el rango no siempre es igual a la altura. Además, el tamaño (en lugar de la altura) de los árboles también se puede usar como rango . El uso del tamaño como rango también produce una complejidad de tiempo en el peor de los casos como O (Iniciar sesión).
Let us see the above example with union by rank Initially, all elements are single element subsets. 0 1 2 3 Do Union(0, 1) 1 2 3 / 0 Do Union(1, 2) 1 3 / \ 0 2 Do Union(2, 3) 1 / | \ 0 2 3
La segunda optimización del método ingenuo es Path Compression . La idea es aplanar el árbol cuando se llama a find() . Cuando se llama a find() para un elemento x, se devuelve la raíz del árbol. La operación find() atraviesa desde x para encontrar la raíz. La idea de la compresión de ruta es hacer que la raíz encontrada sea el padre de x para que no tengamos que atravesar todos los Nodes intermedios nuevamente. Si x es la raíz de un subárbol, entonces la ruta (a la raíz) desde todos los Nodes debajo de x también se comprime.
Let the subset {0, 1, .. 9} be represented as below and find() is called for element 3. 9 / | \ 4 5 6 / / \ 0 7 8 / 3 / \ 1 2 When find() is called for 3, we traverse up and find 9 as representative of this subset. With path compression, we also make 3 and 0 as the child of 9 so that when find() is called next time for 0, 1, 2 or 3, the path to root is reduced. --------9------- / / / \ \ 0 4 5 6 3 / \ / \ 7 8 1 2
Las dos técnicas se complementan. La complejidad temporal de cada operación se vuelve incluso menor que O(Logn). De hecho, la complejidad del tiempo amortizado se convierte efectivamente en una pequeña constante.
A continuación se muestra la implementación basada en la compresión de unión por rango y ruta para encontrar un ciclo en un gráfico.
C++
// A C++ program to detect cycle in a graph using union by // rank and path compression #include <bits/stdc++.h> using namespace std; // a structure to represent an edge in the graph struct Edge { int src, dest; }; // a structure to represent a graph struct Graph { // V-> Number of vertices, E-> Number of edges int V, E; // graph is represented as an array of edges struct Edge* edge; }; struct subset { int parent; int rank; }; // Creates a graph with V vertices and E edges struct Graph* createGraph(int V, int E) { struct Graph* graph = (struct Graph*)malloc(sizeof(struct Graph)); graph->V = V; graph->E = E; graph->edge = (struct Edge*)malloc(graph->E * sizeof(struct Edge)); return graph; } // A utility function to find set of an element i // (uses path compression technique) int find(struct subset subsets[], int i) { // find root and make root as parent of i (path // compression) if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union of two sets of x and y // (uses union by rank) void Union(struct subset subsets[], int xroot, int yroot) { // Attach smaller rank tree under root of high rank tree // (Union by Rank) if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; // If ranks are same, then make one as root and // increment its rank by one else { subsets[yroot].parent = xroot; subsets[xroot].rank++; } } // The main function to check whether a given graph contains // cycle or not int isCycle(struct Graph* graph) { int V = graph->V; int E = graph->E; // Allocate memory for creating V sets struct subset* subsets = (struct subset*)malloc(V * sizeof(struct subset)); for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } // Iterate through all edges of graph, find sets of both // vertices of every edge, if sets are same, then there // is cycle in graph. for (int e = 0; e < E; ++e) { int x = find(subsets, graph->edge[e].src); int y = find(subsets, graph->edge[e].dest); if (x == y) return 1; Union(subsets, x, y); } return 0; } // Driver code int main() { /* Let us create the following graph 0 | \ | \ 1-----2 */ int V = 3, E = 3; struct Graph* graph = createGraph(V, E); // add edge 0-1 graph->edge[0].src = 0; graph->edge[0].dest = 1; // add edge 1-2 graph->edge[1].src = 1; graph->edge[1].dest = 2; // add edge 0-2 graph->edge[2].src = 0; graph->edge[2].dest = 2; if (isCycle(graph)) cout << "Graph contains cycle"; else cout << "Graph doesn't contain cycle"; return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
C
// A C program to detect cycle in a graph using union by // rank and path compression #include <stdio.h> #include <stdlib.h> // a structure to represent an edge in the graph typedef struct Edge { int src, dest; }Edge; // a structure to represent a graph typedef struct Graph { // V-> Number of vertices, E-> Number of edges int V, E; // graph is represented as an array of edges struct Edge* edge; }Graph; typedef struct subset { int parent; int rank; }subset; // Creates a graph with V vertices and E edges Graph* createGraph(int V, int E) { Graph* graph = (Graph*)malloc(sizeof(Graph)); graph->V = V; graph->E = E; graph->edge = (Edge*)malloc(graph->E * sizeof(Edge)); return graph; } // A utility function to find set of an element i // (uses path compression technique) int find(subset subsets[], int i) { // find root and make root as parent of i (path // compression) if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union of two sets of x and y // (uses union by rank) void Union(subset subsets[], int xroot, int yroot) { // Attach smaller rank tree under root of high rank tree // (Union by Rank) if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; // If ranks are same, then make one as root and // increment its rank by one else { subsets[yroot].parent = xroot; subsets[xroot].rank++; } } // The main function to check whether a given graph contains // cycle or not int isCycle(Graph* graph) { int V = graph->V; int E = graph->E; // Allocate memory for creating V sets subset* subsets = (subset*)malloc(V * sizeof(subset)); for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } // Iterate through all edges of graph, find sets of both // vertices of every edge, if sets are same, then there // is cycle in graph. for (int e = 0; e < E; ++e) { int x = find(subsets, graph->edge[e].src); int y = find(subsets, graph->edge[e].dest); if (x == y) return 1; Union(subsets, x, y); } return 0; } // Driver code int main() { /* Let us create the following graph 0 | \ | \ 1-----2 */ int V = 3, E = 3; Graph* graph = createGraph(V, E); // add edge 0-1 graph->edge[0].src = 0; graph->edge[0].dest = 1; // add edge 1-2 graph->edge[1].src = 1; graph->edge[1].dest = 2; // add edge 0-2 graph->edge[2].src = 0; graph->edge[2].dest = 2; if (isCycle(graph)) printf("Graph contains cycle"); else printf("Graph doesn't contain cycle"); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
// A union by rank and path compression // based program to detect cycle in a graph class Graph { int V, E; Edge[] edge; Graph(int nV, int nE) { V = nV; E = nE; edge = new Edge[E]; for (int i = 0; i < E; i++) { edge[i] = new Edge(); } } // class to represent edge class Edge { int src, dest; } // class to represent Subset class subset { int parent; int rank; } // A utility function to find // set of an element i (uses // path compression technique) int find(subset[] subsets, int i) { if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union // of two sets of x and y // (uses union by rank) void Union(subset[] subsets, int x, int y) { int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[yroot].rank < subsets[xroot].rank) subsets[yroot].parent = xroot; else { subsets[xroot].parent = yroot; subsets[yroot].rank++; } } // The main function to check whether // a given graph contains cycle or not int isCycle(Graph graph) { int V = graph.V; int E = graph.E; subset[] subsets = new subset[V]; for (int v = 0; v < V; v++) { subsets[v] = new subset(); subsets[v].parent = v; subsets[v].rank = 0; } for (int e = 0; e < E; e++) { int x = find(subsets, graph.edge[e].src); int y = find(subsets, graph.edge[e].dest); if (x == y) return 1; Union(subsets, x, y); } return 0; } // Driver Code public static void main(String[] args) { /* Let us create the following graph 0 | \ | \ 1-----2 */ int V = 3, E = 3; Graph graph = new Graph(V, E); // add edge 0-1 graph.edge[0].src = 0; graph.edge[0].dest = 1; // add edge 1-2 graph.edge[1].src = 1; graph.edge[1].dest = 2; // add edge 0-2 graph.edge[2].src = 0; graph.edge[2].dest = 2; if (graph.isCycle(graph) == 1) System.out.println("Graph contains cycle"); else System.out.println( "Graph doesn't contain cycle"); } } // This code is contributed // by ashwani khemani
Python3
# A union by rank and path compression based # program to detect cycle in a graph from collections import defaultdict # a structure to represent a graph class Graph: def __init__(self, num_of_v): self.num_of_v = num_of_v self.edges = defaultdict(list) # graph is represented as an # array of edges def add_edge(self, u, v): self.edges[u].append(v) class Subset: def __init__(self, parent, rank): self.parent = parent self.rank = rank # A utility function to find set of an element # node(uses path compression technique) def find(subsets, node): if subsets[node].parent != node: subsets[node].parent = find(subsets, subsets[node].parent) return subsets[node].parent # A function that does union of two sets # of u and v(uses union by rank) def union(subsets, u, v): # Attach smaller rank tree under root # of high rank tree(Union by Rank) if subsets[u].rank > subsets[v].rank: subsets[v].parent = u elif subsets[v].rank > subsets[u].rank: subsets[u].parent = v # If ranks are same, then make one as # root and increment its rank by one else: subsets[v].parent = u subsets[u].rank += 1 # The main function to check whether a given # graph contains cycle or not def isCycle(graph): # Allocate memory for creating sets subsets = [] for u in range(graph.num_of_v): subsets.append(Subset(u, 0)) # Iterate through all edges of graph, # find sets of both vertices of every # edge, if sets are same, then there # is cycle in graph. for u in graph.edges: u_rep = find(subsets, u) for v in graph.edges[u]: v_rep = find(subsets, v) if u_rep == v_rep: return True else: union(subsets, u_rep, v_rep) # Driver Code g = Graph(3) # add edge 0-1 g.add_edge(0, 1) # add edge 1-2 g.add_edge(1, 2) # add edge 0-2 g.add_edge(0, 2) if isCycle(g): print('Graph contains cycle') else: print('Graph does not contain cycle') # This code is contributed by # Sampath Kumar Surine
C#
// A union by rank and path compression // based program to detect cycle in a graph using System; class Graph { public int V, E; public Edge[] edge; public Graph(int nV, int nE) { V = nV; E = nE; edge = new Edge[E]; for (int i = 0; i < E; i++) { edge[i] = new Edge(); } } // class to represent edge public class Edge { public int src, dest; } // class to represent Subset class subset { public int parent; public int rank; } // A utility function to find // set of an element i (uses // path compression technique) int find(subset[] subsets, int i) { if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union // of two sets of x and y // (uses union by rank) void Union(subset[] subsets, int x, int y) { int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[yroot].rank < subsets[xroot].rank) subsets[yroot].parent = xroot; else { subsets[xroot].parent = yroot; subsets[yroot].rank++; } } // The main function to check whether // a given graph contains cycle or not int isCycle(Graph graph) { int V = graph.V; int E = graph.E; subset[] subsets = new subset[V]; for (int v = 0; v < V; v++) { subsets[v] = new subset(); subsets[v].parent = v; subsets[v].rank = 0; } for (int e = 0; e < E; e++) { int x = find(subsets, graph.edge[e].src); int y = find(subsets, graph.edge[e].dest); if (x == y) return 1; Union(subsets, x, y); } return 0; } // Driver Code static public void Main(String[] args) { /* Let us create the following graph 0 | \ | \ 1-----2 */ int V = 3, E = 3; Graph graph = new Graph(V, E); // add edge 0-1 graph.edge[0].src = 0; graph.edge[0].dest = 1; // add edge 1-2 graph.edge[1].src = 1; graph.edge[1].dest = 2; // add edge 0-2 graph.edge[2].src = 0; graph.edge[2].dest = 2; if (graph.isCycle(graph) == 1) Console.WriteLine("Graph contains cycle"); else Console.WriteLine( "Graph doesn't contain cycle"); } } // This code is contributed // by Arnab Kundu
Javascript
<script> // A union by rank and path compression // based program to detect cycle in a graph let V, E; let edge; function Graph(nV,nE) { V = nV; E = nE; edge = new Array(E); for (let i = 0; i < E; i++) { edge[i] = new Edge(); } } // class to represent edge class Edge { constructor() { this.src=0; this.dest=0; } } // class to represent Subset class subset { constructor() { this.parent=0; this.rank=0; } } // A utility function to find // set of an element i (uses // path compression technique) function find(subsets,i) { if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } // A function that does union // of two sets of x and y // (uses union by rank) function Union(subsets,x,y) { let xroot = find(subsets, x); let yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[yroot].rank < subsets[xroot].rank) subsets[yroot].parent = xroot; else { subsets[xroot].parent = yroot; subsets[yroot].rank++; } } // The main function to check whether // a given graph contains cycle or not function isCycle() { let subsets = new Array(V); for (let v = 0; v < V; v++) { subsets[v] = new subset(); subsets[v].parent = v; subsets[v].rank = 0; } for (let e = 0; e < E; e++) { let x = find(subsets, edge[e].src); let y = find(subsets, edge[e].dest); if (x == y) return 1; Union(subsets, x, y); } return 0; } // Driver Code /* Let us create the following graph 0 | \ | \ 1-----2 */ V = 3, E = 3; Graph(V, E); // add edge 0-1 edge[0].src = 0; edge[0].dest = 1; // add edge 1-2 edge[1].src = 1; edge[1].dest = 2; // add edge 0-2 edge[2].src = 0; edge[2].dest = 2; if (isCycle() == 1) document.write("Graph contains cycle"); else document.write( "Graph doesn't contain cycle"); // This code is contributed by avanitrachhadiya2155 </script>
Graph contains cycle
Artículos relacionados :
- Algoritmo de búsqueda de unión | Conjunto 1 (Detectar ciclo en un gráfico no dirigido)
- Estructuras de datos de conjuntos disjuntos (Implementación de Java)
- Algoritmos codiciosos | Conjunto 2 (algoritmo de árbol de expansión mínimo de Kruskal)
- Problema de secuenciación de trabajos | Conjunto 2 (usando conjunto disjunto)
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA