En MS-Paint, cuando llevamos el pincel a un píxel y hacemos clic, el color de la región de ese píxel se reemplaza con un nuevo color seleccionado. A continuación se presenta el enunciado del problema para realizar esta tarea.
Dada una pantalla 2D, la ubicación de un píxel en la pantalla y un color, reemplace el color del píxel dado y todos los píxeles adyacentes del mismo color con el color dado.
Ejemplo:
Input: screen[M][N] = {{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 2, 2, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 2, 2, 0}, {1, 1, 1, 1, 1, 2, 1, 1}, {1, 1, 1, 1, 1, 2, 2, 1}, }; x = 4, y = 4, newColor = 3 The values in the given 2D screen indicate colors of the pixels. x and y are coordinates of the brush, newColor is the color that should replace the previous color on screen[x][y] and all surrounding pixels with same color. Output: Screen should be changed to following. screen[M][N] = {{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 3, 3, 3, 3, 0, 1, 0}, {1, 1, 1, 3, 3, 0, 1, 0}, {1, 1, 1, 3, 3, 3, 3, 0}, {1, 1, 1, 1, 1, 3, 1, 1}, {1, 1, 1, 1, 1, 3, 3, 1}, };
Esta pregunta se puede resolver usando Recursión o BFS. Ambas soluciones se discuten a continuación.
Método 1 (usando recursividad): la idea es simple, primero reemplazamos el color del píxel actual, luego recurrimos a 4 puntos circundantes. El siguiente es un algoritmo detallado.
// A recursive function to replace // previous color 'prevC' at '(x, y)' // and all surrounding pixels of (x, y) // with new color 'newC' and floodFill(screen[M][N], x, y, prevC, newC) 1) If x or y is outside the screen, then return. 2) If color of screen[x][y] is not same as prevC, then return 3) Recur for north, south, east and west. floodFillUtil(screen, x+1, y, prevC, newC); floodFillUtil(screen, x-1, y, prevC, newC); floodFillUtil(screen, x, y+1, prevC, newC); floodFillUtil(screen, x, y-1, prevC, newC);
La siguiente es la implementación del algoritmo anterior.
C++
// A C++ program to implement flood fill algorithm #include<iostream> using namespace std; // Dimensions of paint screen #define M 8 #define N 8 // A recursive function to replace previous color 'prevC' at '(x, y)' // and all surrounding pixels of (x, y) with new color 'newC' and void floodFillUtil(int screen[][N], int x, int y, int prevC, int newC) { // Base cases if (x < 0 || x >= M || y < 0 || y >= N) return; if (screen[x][y] != prevC) return; if (screen[x][y] == newC) return; // Replace the color at (x, y) screen[x][y] = newC; // Recur for north, east, south and west floodFillUtil(screen, x+1, y, prevC, newC); floodFillUtil(screen, x-1, y, prevC, newC); floodFillUtil(screen, x, y+1, prevC, newC); floodFillUtil(screen, x, y-1, prevC, newC); } // It mainly finds the previous color on (x, y) and // calls floodFillUtil() void floodFill(int screen[][N], int x, int y, int newC) { int prevC = screen[x][y]; if(prevC==newC) return; floodFillUtil(screen, x, y, prevC, newC); } // Driver code int main() { int screen[M][N] = {{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 2, 2, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 2, 2, 0}, {1, 1, 1, 1, 1, 2, 1, 1}, {1, 1, 1, 1, 1, 2, 2, 1}, }; int x = 4, y = 4, newC = 3; floodFill(screen, x, y, newC); cout << "Updated screen after call to floodFill: \n"; for (int i=0; i<M; i++) { for (int j=0; j<N; j++) cout << screen[i][j] << " "; cout << endl; } } //Updated by Arun Pandey
Java
// Java program to implement flood fill algorithm class GFG { // Dimensions of paint screen static int M = 8; static int N = 8; // A recursive function to replace previous color 'prevC' at '(x, y)' // and all surrounding pixels of (x, y) with new color 'newC' and static void floodFillUtil(int screen[][], int x, int y, int prevC, int newC) { // Base cases if (x < 0 || x >= M || y < 0 || y >= N) return; if (screen[x][y] != prevC) return; // Replace the color at (x, y) screen[x][y] = newC; // Recur for north, east, south and west floodFillUtil(screen, x+1, y, prevC, newC); floodFillUtil(screen, x-1, y, prevC, newC); floodFillUtil(screen, x, y+1, prevC, newC); floodFillUtil(screen, x, y-1, prevC, newC); } // It mainly finds the previous color on (x, y) and // calls floodFillUtil() static void floodFill(int screen[][], int x, int y, int newC) { int prevC = screen[x][y]; if(prevC==newC) return; floodFillUtil(screen, x, y, prevC, newC); } // Driver code public static void main(String[] args) { int screen[][] = {{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 2, 2, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 2, 2, 0}, {1, 1, 1, 1, 1, 2, 1, 1}, {1, 1, 1, 1, 1, 2, 2, 1}, }; int x = 4, y = 4, newC = 3; floodFill(screen, x, y, newC); System.out.println("Updated screen after call to floodFill: "); for (int i = 0; i < M; i++) { for (int j = 0; j < N; j++) System.out.print(screen[i][j] + " "); System.out.println(); } } } // This code has been contributed by 29AjayKumar // Updated by Arun Pandey
Python3
# Python3 program to implement # flood fill algorithm # Dimensions of paint screen M = 8 N = 8 # A recursive function to replace # previous color 'prevC' at '(x, y)' # and all surrounding pixels of (x, y) # with new color 'newC' and def floodFillUtil(screen, x, y, prevC, newC): # Base cases if (x < 0 or x >= M or y < 0 or y >= N or screen[x][y] != prevC or screen[x][y] == newC): return # Replace the color at (x, y) screen[x][y] = newC # Recur for north, east, south and west floodFillUtil(screen, x + 1, y, prevC, newC) floodFillUtil(screen, x - 1, y, prevC, newC) floodFillUtil(screen, x, y + 1, prevC, newC) floodFillUtil(screen, x, y - 1, prevC, newC) # It mainly finds the previous color on (x, y) and # calls floodFillUtil() def floodFill(screen, x, y, newC): prevC = screen[x][y] if(prevC==newC): return floodFillUtil(screen, x, y, prevC, newC) # Driver Code screen = [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 1], [1, 2, 2, 2, 2, 0, 1, 0], [1, 1, 1, 2, 2, 0, 1, 0], [1, 1, 1, 2, 2, 2, 2, 0], [1, 1, 1, 1, 1, 2, 1, 1], [1, 1, 1, 1, 1, 2, 2, 1]] x = 4 y = 4 newC = 3 floodFill(screen, x, y, newC) print ("Updated screen after call to floodFill:") for i in range(M): for j in range(N): print(screen[i][j], end = ' ') print() # This code is contributed by Ashutosh450 # Updated by Arun Pandey
C#
// C# program to implement // flood fill algorithm using System; class GFG { // Dimensions of paint screen static int M = 8; static int N = 8; // A recursive function to replace // previous color 'prevC' at '(x, y)' // and all surrounding pixels of (x, y) // with new color 'newC' and static void floodFillUtil(int [,]screen, int x, int y, int prevC, int newC) { // Base cases if (x < 0 || x >= M || y < 0 || y >= N) return; if (screen[x, y] != prevC) return; // Replace the color at (x, y) screen[x, y] = newC; // Recur for north, east, south and west floodFillUtil(screen, x + 1, y, prevC, newC); floodFillUtil(screen, x - 1, y, prevC, newC); floodFillUtil(screen, x, y + 1, prevC, newC); floodFillUtil(screen, x, y - 1, prevC, newC); } // It mainly finds the previous color // on (x, y) and calls floodFillUtil() static void floodFill(int [,]screen, int x, int y, int newC) { int prevC = screen[x, y]; if(prevC == newC) return; floodFillUtil(screen, x, y, prevC, newC); } // Driver code public static void Main(String[] args) { int [,]screen = {{1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 2, 2, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 0, 1, 0}, {1, 1, 1, 2, 2, 2, 2, 0}, {1, 1, 1, 1, 1, 2, 1, 1}, {1, 1, 1, 1, 1, 2, 2, 1}}; int x = 4, y = 4, newC = 3; floodFill(screen, x, y, newC); Console.WriteLine("Updated screen after" + "call to floodFill: "); for (int i = 0; i < M; i++) { for (int j = 0; j < N; j++) Console.Write(screen[i, j] + " "); Console.WriteLine(); } } } // This code is contributed by PrinciRaj1992 // Updated by Arun Pandey
Javascript
<script> // JavaScript program to implement // flood fill algorithm // Dimensions of paint screen var M = 8; var N = 8; // A recursive function to replace // previous color 'prevC' at '(x, y)' // and all surrounding pixels of (x, y) // with new color 'newC' and function floodFillUtil(screen, x, y, prevC, newC) { // Base cases if (x < 0 || x >= M || y < 0 || y >= N) return; if (screen[x][y] != prevC) return; // Replace the color at (x, y) screen[x][y] = newC; // Recur for north, east, south and west floodFillUtil(screen, x + 1, y, prevC, newC); floodFillUtil(screen, x - 1, y, prevC, newC); floodFillUtil(screen, x, y + 1, prevC, newC); floodFillUtil(screen, x, y - 1, prevC, newC); } // It mainly finds the previous color // on (x, y) and calls floodFillUtil() function floodFill(screen, x, y, newC) { var prevC = screen[x][y]; if (prevC == newC) return; floodFillUtil(screen, x, y, prevC, newC); } // Driver code var screen = [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 1], [1, 2, 2, 2, 2, 0, 1, 0], [1, 1, 1, 2, 2, 0, 1, 0], [1, 1, 1, 2, 2, 2, 2, 0], [1, 1, 1, 1, 1, 2, 1, 1], [1, 1, 1, 1, 1, 2, 2, 1], ]; var x = 4, y = 4, newC = 3; floodFill(screen, x, y, newC); document.write("Updated screen after" + "call to floodFill: <br>"); for (var i = 0; i < M; i++) { for (var j = 0; j < N; j++) document.write(screen[i][j] + " "); document.write("<br>"); } // This code is contributed by rdtank. </script>
Updated screen after call to floodFill: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 3 3 3 3 0 1 0 1 1 1 3 3 0 1 0 1 1 1 3 3 3 3 0 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 1
Complejidad temporal: O(M x N).
Espacio auxiliar: O (M x N), ya que se crea una pila implícita debido a la recursividad
Método 2 (usando el enfoque BFS):
Algoritmo para el enfoque basado en BFS:
- Crea una cola de parejas.
- Inserta un índice inicial dado en la cola.
- Marque el índice inicial como visitado en la array vis[][].
- Hasta que la cola no esté vacía, repita los pasos 4.1 a 4.6
- Tome el elemento frontal de la cola.
- Pop de la cola
- Almacene el valor/color actual en la coordenada extraída de la cola (precolor)
- Actualizar el valor/color del índice actual que se saca de la cola
- Verifique que las 4 direcciones, es decir, (x + 1, y), (x-1, y), (x, y + 1), (x, y-1) sean válidas o no y, si son válidas, verifique ese valor en ese la coordenada debe ser igual a precolor y el valor de esa coordenada en vis[][] es 0.
- Si todas las condiciones anteriores son verdaderas, presione la coordenada correspondiente en la cola y márquela como 1 en vis[][]
- Imprime la array.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to check valid coordinate int validCoord(int x, int y, int n, int m) { if (x < 0 || y < 0) { return 0; } if (x >= n || y >= m) { return 0; } return 1; } // Function to run bfs void bfs(int n, int m, int data[][8], int x, int y, int color) { // Visiting array int vis[101][101]; // Initializing all as zero memset(vis, 0, sizeof(vis)); // Creating queue for bfs queue<pair<int, int> > obj; // Pushing pair of {x, y} obj.push({ x, y }); // Marking {x, y} as visited vis[x][y] = 1; // Until queue is empty while (obj.empty() != 1) { // Extracting front pair pair<int, int> coord = obj.front(); int x = coord.first; int y = coord.second; int preColor = data[x][y]; data[x][y] = color; // Popping front pair of queue obj.pop(); // For Upside Pixel or Cell if (validCoord(x + 1, y, n, m) && vis[x + 1][y] == 0 && data[x + 1][y] == preColor) { obj.push({ x + 1, y }); vis[x + 1][y] = 1; } // For Downside Pixel or Cell if (validCoord(x - 1, y, n, m) && vis[x - 1][y] == 0 && data[x - 1][y] == preColor) { obj.push({ x - 1, y }); vis[x - 1][y] = 1; } // For Right side Pixel or Cell if (validCoord(x, y + 1, n, m) && vis[x][y + 1] == 0 && data[x][y + 1] == preColor) { obj.push({ x, y + 1 }); vis[x][y + 1] = 1; } // For Left side Pixel or Cell if (validCoord(x, y - 1, n, m) && vis[x][y - 1] == 0 && data[x][y - 1] == preColor) { obj.push({ x, y - 1 }); vis[x][y - 1] = 1; } } // Printing The Changed Matrix Of Pixels for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cout << data[i][j] << " "; } cout << endl; } cout << endl; } // Driver Code int main() { int n, m, x, y, color; n = 8; m = 8; int data[8][8] = { { 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 0, 0 }, { 1, 0, 0, 1, 1, 0, 1, 1 }, { 1, 2, 2, 2, 2, 0, 1, 0 }, { 1, 1, 1, 2, 2, 0, 1, 0 }, { 1, 1, 1, 2, 2, 2, 2, 0 }, { 1, 1, 1, 1, 1, 2, 1, 1 }, { 1, 1, 1, 1, 1, 2, 2, 1 }, }; x = 4, y = 4, color = 3; // Function Call bfs(n, m, data, x, y, color); return 0; }
Java
// Java program for above approachimport java.io.*; import java.util.*; // Class to store the pairs class Pair implements Comparable<Pair> { int first; int second; public Pair(int first, int second) { this.first = first; this.second = second; } @Override public int compareTo(Pair o) { return second - o.second; } } class GFG { public static int validCoord(int x, int y, int n, int m) { if (x < 0 || y < 0) { return 0; } if (x >= n || y >= m) { return 0; } return 1; } // Function to run bfs public static void bfs(int n, int m, int data[][],int x, int y, int color) { // Visiting array int vis[][]=new int[101][101]; // Initializing all as zero for(int i=0;i<=100;i++){ for(int j=0;j<=100;j++){ vis[i][j]=0; } } // Creating queue for bfs Queue<Pair> obj = new LinkedList<>(); // Pushing pair of {x, y} Pair pq=new Pair(x,y); obj.add(pq); // Marking {x, y} as visited vis[x][y] = 1; // Until queue is empty while (!obj.isEmpty()) { // Extracting front pair Pair coord = obj.peek(); int x1 = coord.first; int y1 = coord.second; int preColor = data[x1][y1]; data[x1][y1] = color; // Popping front pair of queue obj.remove(); // For Upside Pixel or Cell if ((validCoord(x1 + 1, y1, n, m)==1) && vis[x1 + 1][y1] == 0 && data[x1 + 1][y1] == preColor) { Pair p=new Pair(x1 +1, y1); obj.add(p); vis[x1 + 1][y1] = 1; } // For Downside Pixel or Cell if ((validCoord(x1 - 1, y1, n, m)==1) && vis[x1 - 1][y1] == 0 && data[x1 - 1][y1] == preColor) { Pair p=new Pair(x1-1,y1); obj.add(p); vis[x1- 1][y1] = 1; } // For Right side Pixel or Cell if ((validCoord(x1, y1 + 1, n, m)==1) && vis[x1][y1 + 1] == 0 && data[x1][y1 + 1] == preColor) { Pair p=new Pair(x1,y1 +1); obj.add(p); vis[x1][y1 + 1] = 1; } // For Left side Pixel or Cell if ((validCoord(x1, y1 - 1, n, m)==1) && vis[x1][y1 - 1] == 0 && data[x1][y1 - 1] == preColor) { Pair p=new Pair(x1,y1 -1); obj.add(p); vis[x1][y1 - 1] = 1; } } // Printing The Changed Matrix Of Pixels for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { System.out.print(data[i][j]+" "); } System.out.println(); } System.out.println(); } public static void main (String[] args) { int nn, mm, xx, yy, colorr; nn = 8; mm = 8; int data[][] = {{ 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 0, 0 }, { 1, 0, 0, 1, 1, 0, 1, 1 }, { 1, 2, 2, 2, 2, 0, 1, 0 }, { 1, 1, 1, 2, 2, 0, 1, 0 }, { 1, 1, 1, 2, 2, 2, 2, 0 }, { 1, 1, 1, 1, 1, 2, 1, 1 }, { 1, 1, 1, 1, 1, 2, 2, 1 },}; xx = 4; yy = 4; colorr = 3; // Function Call bfs(nn, mm, data, xx, yy, colorr); } } // This code is contributed by Manu Pathria
Python3
# Python3 program for above approach # Function to check valid coordinate def validCoord(x, y, n, m): if x < 0 or y < 0: return 0 if x >= n or y >= m: return 0 return 1 # Function to run bfs def bfs(n, m, data, X, Y, color): # Visiting array vis = [[0 for i in range(101)] for j in range(101)] # Creating queue for bfs obj = [] # Pushing pair of {x, y} obj.append([X, Y]) # Marking {x, y} as visited vis[X][Y] = 1 # Until queue is empty while len(obj) > 0: # Extracting front pair coord = obj[0] x = coord[0] y = coord[1] preColor = data[x][y] data[x][y] = color # Popping front pair of queue obj.pop(0) # For Upside Pixel or Cell if validCoord(x + 1, y, n, m) == 1 and vis[x + 1][y] == 0 and data[x + 1][y] == preColor: obj.append([x + 1, y]) vis[x + 1][y] = 1 # For Downside Pixel or Cell if validCoord(x - 1, y, n, m) == 1 and vis[x - 1][y] == 0 and data[x - 1][y] == preColor: obj.append([x - 1, y]) vis[x - 1][y] = 1 # For Right side Pixel or Cell if validCoord(x, y + 1, n, m) == 1 and vis[x][y + 1] == 0 and data[x][y + 1] == preColor: obj.append([x, y + 1]) vis[x][y + 1] = 1 # For Left side Pixel or Cell if validCoord(x, y - 1, n, m) == 1 and vis[x][y - 1] == 0 and data[x][y - 1] == preColor: obj.append([x, y - 1]) vis[x][y - 1] = 1 # Printing The Changed Matrix Of Pixels for i in range(n): for j in range(m): print(data[i][j], end = " ") print() print() n = 8 m = 8 data = [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 0, 0 ], [ 1, 0, 0, 1, 1, 0, 1, 1 ], [ 1, 2, 2, 2, 2, 0, 1, 0 ], [ 1, 1, 1, 2, 2, 0, 1, 0 ], [ 1, 1, 1, 2, 2, 2, 2, 0 ], [ 1, 1, 1, 1, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 2, 2, 1 ], ] x, y, color = 4, 4, 3 # Function Call bfs(n, m, data, x, y, color) # This code is contributed by decode2207.
C#
// C# program for above approach using System; using System.Collections.Generic; class GFG { // Function to check valid coordinate static int validCoord(int x, int y, int n, int m) { if (x < 0 || y < 0) { return 0; } if (x >= n || y >= m) { return 0; } return 1; } // Function to run bfs static void bfs(int n, int m, int[,] data, int X, int Y, int color) { // Visiting array int[,] vis = new int[101,101]; // Creating queue for bfs List<Tuple<int, int>> obj = new List<Tuple<int, int>>(); // Pushing pair of {x, y} obj.Add(new Tuple<int,int>( X, Y )); // Marking {x, y} as visited vis[X,Y] = 1; // Until queue is empty while (obj.Count > 0) { // Extracting front pair Tuple<int, int> coord = obj[0]; int x = coord.Item1; int y = coord.Item2; int preColor = data[x,y]; data[x,y] = color; // Popping front pair of queue obj.RemoveAt(0); // For Upside Pixel or Cell if (validCoord(x + 1, y, n, m) == 1 && vis[x + 1,y] == 0 && data[x + 1,y] == preColor) { obj.Add(new Tuple<int,int>(x + 1, y)); vis[x + 1,y] = 1; } // For Downside Pixel or Cell if (validCoord(x - 1, y, n, m) == 1 && vis[x - 1,y] == 0 && data[x - 1,y] == preColor) { obj.Add(new Tuple<int,int>(x - 1, y)); vis[x - 1,y] = 1; } // For Right side Pixel or Cell if (validCoord(x, y + 1, n, m) == 1 && vis[x,y + 1] == 0 && data[x,y + 1] == preColor) { obj.Add(new Tuple<int,int>(x, y + 1)); vis[x,y + 1] = 1; } // For Left side Pixel or Cell if (validCoord(x, y - 1, n, m) == 1 && vis[x,y - 1] == 0 && data[x,y - 1] == preColor) { obj.Add(new Tuple<int,int>(x, y - 1)); vis[x,y - 1] = 1; } } // Printing The Changed Matrix Of Pixels for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { Console.Write(data[i,j] + " "); } Console.WriteLine(); } Console.WriteLine(); } static void Main() { int n, m, x, y, color; n = 8; m = 8; int[,] data = { { 1, 1, 1, 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1, 1, 0, 0 }, { 1, 0, 0, 1, 1, 0, 1, 1 }, { 1, 2, 2, 2, 2, 0, 1, 0 }, { 1, 1, 1, 2, 2, 0, 1, 0 }, { 1, 1, 1, 2, 2, 2, 2, 0 }, { 1, 1, 1, 1, 1, 2, 1, 1 }, { 1, 1, 1, 1, 1, 2, 2, 1 }, }; x = 4; y = 4; color = 3; // Function Call bfs(n, m, data, x, y, color); } } // This code is contributed by divyeshrabadiya07.
Javascript
<script> // Javascript program for above approach // Function to check valid coordinate function validCoord(x, y, n, m) { if (x < 0 || y < 0) { return 0; } if (x >= n || y >= m) { return 0; } return 1; } // Function to run bfs function bfs(n, m, data, X, Y, color) { // Visiting array let vis = new Array(101); for(let i = 0; i < 101; i++) { vis[i] = new Array(101); for(let j = 0; j < 101; j++) { vis[i][j] = 0; } } // Creating queue for bfs let obj = []; // Pushing pair of {x, y} obj.push([X, Y]); // Marking {x, y} as visited vis[X][Y] = 1; // Until queue is empty while (obj.length > 0) { // Extracting front pair let coord = obj[0]; let x = coord[0]; let y = coord[1]; let preColor = data[x][y]; data[x][y] = color; // Popping front pair of queue obj.shift(); // For Upside Pixel or Cell if (validCoord(x + 1, y, n, m) == 1 && vis[x + 1][y] == 0 && data[x + 1][y] == preColor) { obj.push([x + 1, y]); vis[x + 1][y] = 1; } // For Downside Pixel or Cell if (validCoord(x - 1, y, n, m) == 1 && vis[x - 1][y] == 0 && data[x - 1][y] == preColor) { obj.push([x - 1, y]); vis[x - 1][y] = 1; } // For Right side Pixel or Cell if (validCoord(x, y + 1, n, m) == 1 && vis[x][y + 1] == 0 && data[x][y + 1] == preColor) { obj.push([x, y + 1]); vis[x][y + 1] = 1; } // For Left side Pixel or Cell if (validCoord(x, y - 1, n, m) == 1 && vis[x][y - 1] == 0 && data[x][y - 1] == preColor) { obj.push([x, y - 1]); vis[x][y - 1] = 1; } } // Printing The Changed Matrix Of Pixels for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { document.write(data[i][j] + " "); } document.write("</br>"); } document.write("</br>"); } let n, m, x, y, color; n = 8; m = 8; let data = [ [ 1, 1, 1, 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 0, 0 ], [ 1, 0, 0, 1, 1, 0, 1, 1 ], [ 1, 2, 2, 2, 2, 0, 1, 0 ], [ 1, 1, 1, 2, 2, 0, 1, 0 ], [ 1, 1, 1, 2, 2, 2, 2, 0 ], [ 1, 1, 1, 1, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 2, 2, 1 ], ]; x = 4, y = 4, color = 3; // Function Call bfs(n, m, data, x, y, color); // This code is contributed by mukesh07. </script>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 3 3 3 3 0 1 0 1 1 1 3 3 0 1 0 1 1 1 3 3 3 3 0 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 1
Complejidad temporal: O(M x N).
Espacio Auxiliar: O(M x N),
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA