Dado un texto txt[0..n-1] y un patrón pat[0..m-1] , escriba una función search(char pat[], char txt[]) que imprima todas las apariciones de pat[] en txt [] . Puede suponer que n > m .
Ejemplos:
C++
// C++ program for implementation of KMP pattern searching // algorithm #include <bits/stdc++.h> void computeLPSArray(char* pat, int M, int* lps); // Prints occurrences of txt[] in pat[] void KMPSearch(char* pat, char* txt) { int M = strlen(pat); int N = strlen(txt); // create lps[] that will hold the longest prefix suffix // values for pattern int lps[M]; // Preprocess the pattern (calculate lps[] array) computeLPSArray(pat, M, lps); int i = 0; // index for txt[] int j = 0; // index for pat[] while ((N - i) >= (M - j)) { if (pat[j] == txt[i]) { j++; i++; } if (j == M) { printf("Found pattern at index %d ", i - j); j = lps[j - 1]; } // mismatch after j matches else if (i < N && pat[j] != txt[i]) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if (j != 0) j = lps[j - 1]; else i = i + 1; } } } // Fills lps[] for given patttern pat[0..M-1] void computeLPSArray(char* pat, int M, int* lps) { // length of the previous longest prefix suffix int len = 0; lps[0] = 0; // lps[0] is always 0 // the loop calculates lps[i] for i = 1 to M-1 int i = 1; while (i < M) { if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } else // (pat[i] != pat[len]) { // This is tricky. Consider the example. // AAACAAAA and i = 7. The idea is similar // to search step. if (len != 0) { len = lps[len - 1]; // Also, note that we do not increment // i here } else // if (len == 0) { lps[i] = 0; i++; } } } } // Driver program to test above function int main() { char txt[] = "ABABDABACDABABCABAB"; char pat[] = "ABABCABAB"; KMPSearch(pat, txt); return 0; }
Java
// JAVA program for implementation of KMP pattern // searching algorithm class KMP_String_Matching { void KMPSearch(String pat, String txt) { int M = pat.length(); int N = txt.length(); // create lps[] that will hold the longest // prefix suffix values for pattern int lps[] = new int[M]; int j = 0; // index for pat[] // Preprocess the pattern (calculate lps[] // array) computeLPSArray(pat, M, lps); int i = 0; // index for txt[] while ((N - i) >= (M - j)) { if (pat.charAt(j) == txt.charAt(i)) { j++; i++; } if (j == M) { System.out.println("Found pattern " + "at index " + (i - j)); j = lps[j - 1]; } // mismatch after j matches else if (i < N && pat.charAt(j) != txt.charAt(i)) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if (j != 0) j = lps[j - 1]; else i = i + 1; } } } void computeLPSArray(String pat, int M, int lps[]) { // length of the previous longest prefix suffix int len = 0; int i = 1; lps[0] = 0; // lps[0] is always 0 // the loop calculates lps[i] for i = 1 to M-1 while (i < M) { if (pat.charAt(i) == pat.charAt(len)) { len++; lps[i] = len; i++; } else // (pat[i] != pat[len]) { // This is tricky. Consider the example. // AAACAAAA and i = 7. The idea is similar // to search step. if (len != 0) { len = lps[len - 1]; // Also, note that we do not increment // i here } else // if (len == 0) { lps[i] = len; i++; } } } } // Driver program to test above function public static void main(String args[]) { String txt = "ABABDABACDABABCABAB"; String pat = "ABABCABAB"; new KMP_String_Matching().KMPSearch(pat, txt); } } // This code has been contributed by Amit Khandelwal.
Python
# Python program for KMP Algorithm def KMPSearch(pat, txt): M = len(pat) N = len(txt) # create lps[] that will hold the longest prefix suffix # values for pattern lps = [0]*M j = 0 # index for pat[] # Preprocess the pattern (calculate lps[] array) computeLPSArray(pat, M, lps) i = 0 # index for txt[] while (N - i) >= (M - j): if pat[j] == txt[i]: i += 1 j += 1 if j == M: print ("Found pattern at index " + str(i-j)) j = lps[j-1] # mismatch after j matches elif i < N and pat[j] != txt[i]: # Do not match lps[0..lps[j-1]] characters, # they will match anyway if j != 0: j = lps[j-1] else: i += 1 def computeLPSArray(pat, M, lps): len = 0 # length of the previous longest prefix suffix lps[0] # lps[0] is always 0 i = 1 # the loop calculates lps[i] for i = 1 to M-1 while i < M: if pat[i]== pat[len]: len += 1 lps[i] = len i += 1 else: # This is tricky. Consider the example. # AAACAAAA and i = 7. The idea is similar # to search step. if len != 0: len = lps[len-1] # Also, note that we do not increment i here else: lps[i] = 0 i += 1 txt = "ABABDABACDABABCABAB" pat = "ABABCABAB" KMPSearch(pat, txt) # This code is contributed by Bhavya Jain
C#
// C# program for implementation of KMP pattern // searching algorithm using System; class GFG { void KMPSearch(string pat, string txt) { int M = pat.Length; int N = txt.Length; // create lps[] that will hold the longest // prefix suffix values for pattern int[] lps = new int[M]; int j = 0; // index for pat[] // Preprocess the pattern (calculate lps[] // array) computeLPSArray(pat, M, lps); int i = 0; // index for txt[] while ((N - i) >= (M - j)) { if (pat[j] == txt[i]) { j++; i++; } if (j == M) { Console.Write("Found pattern " + "at index " + (i - j)); j = lps[j - 1]; } // mismatch after j matches else if (i < N && pat[j] != txt[i]) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if (j != 0) j = lps[j - 1]; else i = i + 1; } } } void computeLPSArray(string pat, int M, int[] lps) { // length of the previous longest prefix suffix int len = 0; int i = 1; lps[0] = 0; // lps[0] is always 0 // the loop calculates lps[i] for i = 1 to M-1 while (i < M) { if (pat[i] == pat[len]) { len++; lps[i] = len; i++; } else // (pat[i] != pat[len]) { // This is tricky. Consider the example. // AAACAAAA and i = 7. The idea is similar // to search step. if (len != 0) { len = lps[len - 1]; // Also, note that we do not increment // i here } else // if (len == 0) { lps[i] = len; i++; } } } } // Driver program to test above function public static void Main() { string txt = "ABABDABACDABABCABAB"; string pat = "ABABCABAB"; new GFG().KMPSearch(pat, txt); } } // This code has been contributed by Amit Khandelwal.
Javascript
<script> //Javascript program for implementation of KMP pattern // searching algorithm function computeLPSArray(pat, M, lps) { // length of the previous longest prefix suffix var len = 0; var i = 1; lps[0] = 0; // lps[0] is always 0 // the loop calculates lps[i] for i = 1 to M-1 while (i < M) { if (pat.charAt(i) == pat.charAt(len)) { len++; lps[i] = len; i++; } else // (pat[i] != pat[len]) { // This is tricky. Consider the example. // AAACAAAA and i = 7. The idea is similar // to search step. if (len != 0) { len = lps[len - 1]; // Also, note that we do not increment // i here } else // if (len == 0) { lps[i] = len; i++; } } } } function KMPSearch(pat,txt) { var M = pat.length; var N = txt.length; // create lps[] that will hold the longest // prefix suffix values for pattern var lps = []; var j = 0; // index for pat[] // Preprocess the pattern (calculate lps[] // array) computeLPSArray(pat, M, lps); var i = 0; // index for txt[] while ((N - i) >= (M - j)) { if (pat.charAt(j) == txt.charAt(i)) { j++; i++; } if (j == M) { document.write("Found pattern " + "at index " + (i - j) + "\n"); j = lps[j - 1]; } // mismatch after j matches else if (i < N && pat.charAt(j) != txt.charAt(i)) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if (j != 0) j = lps[j - 1]; else i = i + 1; } } } var txt = "ABABDABACDABABCABAB"; var pat = "ABABCABAB"; KMPSearch(pat, txt); //This code is contributed by shruti456rawal </script>
PHP
<?php // PHP program for implementation of KMP pattern searching // algorithm // Prints occurrences of txt[] in pat[] function KMPSearch($pat, $txt) { $M = strlen($pat); $N = strlen($txt); // create lps[] that will hold the longest prefix suffix // values for pattern $lps=array_fill(0,$M,0); // Preprocess the pattern (calculate lps[] array) computeLPSArray($pat, $M, $lps); $i = 0; // index for txt[] $j = 0; // index for pat[] while (($N - $i) >= ($M - $j)) { if ($pat[$j] == $txt[$i]) { $j++; $i++; } if ($j == $M) { printf("Found pattern at index ".($i - $j)); $j = $lps[$j - 1]; } // mismatch after j matches else if ($i < $N && $pat[$j] != $txt[$i]) { // Do not match lps[0..lps[j-1]] characters, // they will match anyway if ($j != 0) $j = $lps[$j - 1]; else $i = $i + 1; } } } // Fills lps[] for given patttern pat[0..M-1] function computeLPSArray($pat, $M, &$lps) { // length of the previous longest prefix suffix $len = 0; $lps[0] = 0; // lps[0] is always 0 // the loop calculates lps[i] for i = 1 to M-1 $i = 1; while ($i < $M) { if ($pat[$i] == $pat[$len]) { $len++; $lps[$i] = $len; $i++; } else // (pat[i] != pat[len]) { // This is tricky. Consider the example. // AAACAAAA and i = 7. The idea is similar // to search step. if ($len != 0) { $len = $lps[$len - 1]; // Also, note that we do not increment // i here } else // if (len == 0) { $lps[$i] = 0; $i++; } } } } // Driver program to test above function $txt = "ABABDABACDABABCABAB"; $pat = "ABABCABAB"; KMPSearch($pat, $txt); // This code is contributed by chandan_jnu ?>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA