AND bit a bit de la suma de números primos y la suma de números compuestos en una array

Dada una array de números positivos, la tarea es encontrar el AND bit a bit de la suma de números no primos y la suma de números primos. Tenga en cuenta que 1 no es ni primo ni compuesto.
Ejemplos
 

Entrada: arr[] = {1, 3, 5, 10, 15, 7} 
Salida:
Suma de números no primos = 10 + 15 = 25 
Suma de números primos = 3 + 5 + 7 = 15 
25 y 15 = 9
Entrada : arr[] = {3, 4, 6, 7} 
Salida: 10 
 

Enfoque ingenuo: una solución simple es atravesar la array y seguir verificando cada elemento si es primo o no. Si el número es primo, agréguelo a S1, que almacena la suma de los números primos de la array; de lo contrario, agréguelo a S2, que almacena la suma de los números no primos. Finalmente, imprima S1 y S2. 
Complejidad de tiempo: O(N * sqrt(N))
Enfoque eficiente: Genere todos los números primos hasta el elemento máximo de la array utilizando el Tamiz de Eratóstenes y almacénelos en un hash. Ahora, recorra la array y verifique si el número es primo o no. Al final, calcule e imprima el AND bit a bit de la suma de números primos y la suma de números compuestos.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the bitwise AND of the
// sum of primes and the sum of non-primes
int calculateAND(int arr[], int n)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Store the sum of primes in S1 and
    // the sum of non-primes in S2
    int S1 = 0, S2 = 0;
    for (int i = 0; i < n; i++) {
 
        if (prime[arr[i]]) {
 
            // The number is prime
            S1 += arr[i];
        }
        else if (arr[i] != 1) {
 
            // The number is not prime
            S2 += arr[i];
        }
    }
 
    // Return the bitwise AND of the sums
    return (S1 & S2);
}
 
// Driver code
int main()
{
    int arr[] = { 3, 4, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << calculateAND(arr, n);
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
 
class GFG
{
    static int getMax(int[] A)
    {
        int max = Integer.MIN_VALUE;
        for (int i: A)
        {
            max = Math.max(max, i);
        }
        return max;
    }
 
    // Function to return the bitwise AND of the
    // sum of primes and the sum of non-primes
    static int calculateAND(int arr[], int n)
    {
        // using Collections.max() to find
        // maximum element using only 1 line.
        // Find maximum value in the array
        int max_val = getMax(arr);
 
        // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
        // THAN OR EQUAL TO max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        boolean prime[] = new boolean [max_val + 1];
        int i;
         
        for (i = 0; i < max_val + 1; i++)
            prime[i] = true;
             
        // Remaining part of SIEVE
        prime[0] = false;
        prime[1] = false;
        for (int p = 2; p * p <= max_val; p++)
        {
     
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true)
            {
     
                // Update all multiples of p
                for ( i = p * 2; i <= max_val; i += p)
                    prime[i] = false;
            }
        }
     
        // Store the sum of primes in S1 and
        // the sum of non-primes in S2
        int S1 = 0, S2 = 0;
        for (i = 0; i < n; i++)
        {
            if (prime[arr[i]])
            {
     
                // The number is prime
                S1 += arr[i];
            }
            else if (arr[i] != 1)
            {
     
                // The number is not prime
                S2 += arr[i];
            }
        }
     
        // Return the bitwise AND of the sums
        return (S1 & S2);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 3, 4, 6, 7 };
        int n = arr.length;
     
        System.out.println(calculateAND(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3

# Python3 implementation of the approach
 
# Function to return the bitwise AND of the
# sum of primes and the sum of non-primes
def calculateAND(arr, n):
     
    # Find maximum value in the array
    max_val = max(arr)
  
    # USE SIEVE TO FIND ALL PRIME NUMBERS
    # LESS THAN OR EQUAL TO max_val
    # Create a boolean array "prime[0..n]".
    # A value in prime[i] will finally be false
    # if i is Not a prime, else true.
    prime = [True for i in range(max_val + 1)]
 
    # Remaining part of SIEVE
    prime[0] = False
    prime[1] = False
    for p in range(2, max_val + 1):
 
        if p * p >= max_val:
            break
 
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p]):
 
            # Update all multiples of p
            for i in range(2 * p, max_val + 1, p):
                prime[i] = False
 
    # Store the sum of primes in S1 and
    # the sum of non-primes in S2
    S1 = 0
    S2 = 0
    for i in range(n):
 
        if (prime[arr[i]]):
 
            # The number is prime
            S1 += arr[i]
        elif (arr[i] != 1):
 
            # The number is not prime
            S2 += arr[i]
 
    # Return the bitwise AND of the sums
    return (S1 & S2)
 
# Driver code
arr = [3, 4, 6, 7]
n = len(arr)
 
print(calculateAND(arr, n))
 
# This code is contributed by Mohit Kumar

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
     
class GFG
{
    static int getMax(int[] A)
    {
        int max = int.MinValue;
        foreach (int i in A)
        {
            max = Math.Max(max, i);
        }
        return max;
    }
 
    // Function to return the bitwise AND of the
    // sum of primes and the sum of non-primes
    static int calculateAND(int []arr, int n)
    {
        // using Collections.max() to find
        // maximum element using only 1 line.
        // Find maximum value in the array
        int max_val = getMax(arr);
 
        // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
        // THAN OR EQUAL TO max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        bool []prime = new bool [max_val + 1];
        int i;
         
        for (i = 0; i < max_val + 1; i++)
            prime[i] = true;
             
        // Remaining part of SIEVE
        prime[0] = false;
        prime[1] = false;
        for (int p = 2; p * p <= max_val; p++)
        {
     
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true)
            {
     
                // Update all multiples of p
                for (i = p * 2; i <= max_val; i += p)
                    prime[i] = false;
            }
        }
     
        // Store the sum of primes in S1 and
        // the sum of non-primes in S2
        int S1 = 0, S2 = 0;
        for (i = 0; i < n; i++)
        {
            if (prime[arr[i]])
            {
     
                // The number is prime
                S1 += arr[i];
            }
            else if (arr[i] != 1)
            {
     
                // The number is not prime
                S2 += arr[i];
            }
        }
     
        // Return the bitwise AND of the sums
        return (S1 & S2);
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 3, 4, 6, 7 };
        int n = arr.Length;
     
        Console.WriteLine(calculateAND(arr, n));
    }
}
     
// This code is contributed by Rajput-Ji

Javascript

<script>
 
 
// Javascript implementation of the approach
 
// Function to return the bitwise AND of the
// sum of primes and the sum of non-primes
function calculateAND(arr, n)
{
    // Find maximum value in the array
    var max_val = arr.reduce((a,b)=>Math.max(a,b));
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    var prime = Array(max_val + 1).fill(true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (var p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (var i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Store the sum of primes in S1 and
    // the sum of non-primes in S2
    var S1 = 0, S2 = 0;
    for (var i = 0; i < n; i++) {
 
        if (prime[arr[i]]) {
 
            // The number is prime
            S1 += arr[i];
        }
        else if (arr[i] != 1) {
 
            // The number is not prime
            S2 += arr[i];
        }
    }
 
    // Return the bitwise AND of the sums
    return (S1 & S2);
}
 
// Driver code
var arr = [ 3, 4, 6, 7 ];
var n = arr.length;
document.write( calculateAND(arr, n));
 
</script>
Producción: 

10

 

Complejidad de tiempo: O(N * log(log(N)) 
Complejidad de espacio: O(max_val) donde max_val es el valor máximo de un elemento en la array dada.
 

Publicación traducida automáticamente

Artículo escrito por NikhilRathor y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *