Dado un árbol binario, la tarea es aplanarlo en el orden de su recorrido posterior al orden . En el árbol binario aplanado, el Node izquierdo de todos los Nodes debe ser NULL.
Ejemplos:
Input: 5 / \ 3 7 / \ / \ 2 4 6 8 Output: 2 4 3 6 8 7 5 Input: 1 \ 2 \ 3 \ 4 \ 5 Output: 5 4 3 2 1
Un enfoque simple será recrear el árbol binario a partir de su recorrido posterior al pedido . Esto tomará O (N) espacio extra donde N es el número de Nodes en BST.
Una mejor solución es simular el recorrido posterior al pedido del árbol binario dado.
- Cree un Node ficticio.
- Cree una variable llamada ‘prev’ y haga que apunte al Node ficticio.
- Realice un recorrido posterior al pedido y en cada paso.
- Establecer anterior -> derecha = actual
- Establecer anterior -> izquierda = NULL
- Establecer anterior = actual
Esto mejorará la complejidad del espacio a O(H) en el peor de los casos, ya que el recorrido posterior al pedido requiere espacio adicional de O(H).
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Node of the binary tree struct node { int data; node* left; node* right; node(int data) { this->data = data; left = NULL; right = NULL; } }; // Function to print the flattened // binary Tree void print(node* parent) { node* curr = parent; while (curr != NULL) cout << curr->data << " ", curr = curr->right; } // Function to perform post-order traversal // recursively void postorder(node* curr, node*& prev) { // Base case if (curr == NULL) return; postorder(curr->left, prev); postorder(curr->right, prev); prev->left = NULL; prev->right = curr; prev = curr; } // Function to flatten the given binary tree // using post order traversal node* flatten(node* parent) { // Dummy node node* dummy = new node(-1); // Pointer to previous element node* prev = dummy; // Calling post-order traversal postorder(parent, prev); prev->left = NULL; prev->right = NULL; node* ret = dummy->right; // Delete dummy node delete dummy; return ret; } // Driver code int main() { node* root = new node(5); root->left = new node(3); root->right = new node(7); root->left->left = new node(2); root->left->right = new node(4); root->right->left = new node(6); root->right->right = new node(8); print(flatten(root)); return 0; }
Java
// Java implementation of the approach class GFG { // Node of the binary tree static class node { int data; node left; node right; node(int data) { this.data = data; left = null; right = null; } }; static node prev; // Function to print the flattened // binary Tree static void print(node parent) { node curr = parent; while (curr != null) { System.out.print(curr.data + " "); curr = curr.right; } } // Function to perform post-order traversal // recursively static void postorder(node curr) { // Base case if (curr == null) return; postorder(curr.left); postorder(curr.right); prev.left = null; prev.right = curr; prev = curr; } // Function to flatten the given binary tree // using post order traversal static node flatten(node parent) { // Dummy node node dummy = new node(-1); // Pointer to previous element prev = dummy; // Calling post-order traversal postorder(parent); prev.left = null; prev.right = null; node ret = dummy.right; // Delete dummy node dummy = null; return ret; } // Driver code public static void main(String[] args) { node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); print(flatten(root)); } } // This code is contributed by PrinciRaj1992
Python3
# Python implementation of above algorithm # Utility class to create a node class node: def __init__(self, key): self.data = key self.left = self.right = None # Function to print the flattened # binary Tree def print_(parent): curr = parent while (curr != None): print( curr.data ,end = " ") curr = curr.right prev = None # Function to perform post-order traversal # recursively def postorder( curr ): global prev # Base case if (curr == None): return postorder(curr.left) postorder(curr.right) prev.left = None prev.right = curr prev = curr # Function to flatten the given binary tree # using post order traversal def flatten(parent): global prev # Dummy node dummy = node(-1) # Pointer to previous element prev = dummy # Calling post-order traversal postorder(parent) prev.left = None prev.right = None ret = dummy.right return ret # Driver code root = node(5) root.left = node(3) root.right = node(7) root.left.left = node(2) root.left.right = node(4) root.right.left = node(6) root.right.right = node(8) print_(flatten(root)) # This code is contributed by Arnab Kundu
C#
// C# implementation of the approach using System; class GFG { // Node of the binary tree public class node { public int data; public node left; public node right; public node(int data) { this.data = data; left = null; right = null; } }; static node prev; // Function to print the flattened // binary Tree static void print(node parent) { node curr = parent; while (curr != null) { Console.Write(curr.data + " "); curr = curr.right; } } // Function to perform post-order traversal // recursively static void postorder(node curr) { // Base case if (curr == null) return; postorder(curr.left); postorder(curr.right); prev.left = null; prev.right = curr; prev = curr; } // Function to flatten the given binary tree // using post order traversal static node flatten(node parent) { // Dummy node node dummy = new node(-1); // Pointer to previous element prev = dummy; // Calling post-order traversal postorder(parent); prev.left = null; prev.right = null; node ret = dummy.right; // Delete dummy node dummy = null; return ret; } // Driver code public static void Main(String[] args) { node root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); print(flatten(root)); } } // This code is contributed by Princi Singh
Javascript
<script> // Javascript implementation of the approach // Node of the binary tree class node { constructor(data) { this.data = data; this.left = null; this.right = null; } }; var prev = null; // Function to print the flattened // binary Tree function print(parent) { var curr = parent; while (curr != null) { document.write(curr.data + " "); curr = curr.right; } } // Function to perform post-order traversal // recursively function postorder(curr) { // Base case if (curr == null) return; postorder(curr.left); postorder(curr.right); prev.left = null; prev.right = curr; prev = curr; } // Function to flatten the given binary tree // using post order traversal function flatten(parent) { // Dummy node var dummy = new node(-1); // Pointer to previous element prev = dummy; // Calling post-order traversal postorder(parent); prev.left = null; prev.right = null; var ret = dummy.right; // Delete dummy node dummy = null; return ret; } // Driver code var root = new node(5); root.left = new node(3); root.right = new node(7); root.left.left = new node(2); root.left.right = new node(4); root.right.left = new node(6); root.right.right = new node(8); print(flatten(root)); // This code is contributed by noob2000 </script>
2 4 3 6 8 7 5
Complejidad temporal: O(N)
Espacio auxiliar : O(N). desde que se ha tomado N espacio adicional.
Publicación traducida automáticamente
Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA