Árbol binario (implementación de array)

Dada una array que representa un árbol de tal manera que los índices de la array son valores en los Nodes del árbol y los valores de la array dan el Node principal de ese índice (o Node) en particular. El valor del índice del Node raíz siempre sería -1 ya que no hay un padre para la raíz. Construya la representación vinculada estándar de un árbol binario dado a partir de esta representación dada. Consulte para comprender cómo construir un árbol binario a partir de una representación de array principal dada .

Formas de representar: 

Los árboles se pueden representar de dos maneras, como se indica a continuación:

  1. Representación de Node Dinámico (Representación Vinculada).
  2. Representación de array (Representación secuencial).

Ahora, vamos a hablar de la representación secuencial de los árboles. Para representar un árbol usando una array, la numeración de los Nodes puede comenzar desde 0–(n-1) o 1– n, considere la siguiente ilustración de la siguiente manera:

 

Complete Interview Preparation - GFG

Ilustración:

       A(0)    
     /   \
    B(1)  C(2)  
  /   \      \
 D(3)  E(4)   F(6) 
OR,
      A(1)    
     /   \
    B(2)  C(3)  
  /   \      \
 D(4)  E(5)   F(7)  

Procedimiento:

Nota: padre, hijo_izquierdo y hijo_derecho son los valores de los índices de la array.

 Caso 1: (0—n-1) 

if (say)father=p; 
then left_son=(2*p)+1; 
and right_son=(2*p)+2;

Caso 2: 1—n

if (say)father=p; 
then left_son=(2*p); 
and right_son=(2*p)+1; 

Implementación:

Ejemplos
 

C++

// C++ implementation of tree using array
// numbering starting from 0 to n-1.
#include<bits/stdc++.h>
using namespace std;
char tree[10];
int root(char key) {
  if (tree[0] != '\0')
    cout << "Tree already had root";
  else
    tree[0] = key;
  return 0;
}
 
int set_left(char key, int parent) {
  if (tree[parent] == '\0')
    cout << "\nCan't set child at "
    << (parent * 2) + 1
    << " , no parent found";
  else
    tree[(parent * 2) + 1] = key;
  return 0;
}
 
int set_right(char key, int parent) {
  if (tree[parent] == '\0')
    cout << "\nCan't set child at "
    << (parent * 2) + 2
    << " , no parent found";
  else
    tree[(parent * 2) + 2] = key;
  return 0;
}
 
int print_tree() {
  cout << "\n";
  for (int i = 0; i < 10; i++) {
    if (tree[i] != '\0')
      cout << tree[i];
    else
      cout << "-";
  }
  return 0;
}
 
// Driver Code
int main() {
  root('A');
  set_left('B',0);
  set_right('C', 0);
  set_left('D', 1);
  set_right('E', 1);
  set_right('F', 2);
  print_tree();
  return 0;
}

Java

// JAVA implementation of tree using array
// numbering starting from 0 to n-1.
 
// Importing required classes
import java.io.*;
import java.lang.*;
import java.util.*;
 
// Class 1
// Helper class (Node class)
class Tree {
 
    // Main driver method
    public static void main(String[] args)
    {
 
        // Creating object of class 2 inside main() method
        Array_imp obj = new Array_imp();
 
        // Setting root node
        obj.Root("A");
 
        // obj.set_Left("B", 0);
        obj.set_Right("C", 0);
        obj.set_Left("D", 1);
        obj.set_Right("E", 1);
        obj.set_Left("F", 2);
        obj.print_Tree();
    }
}
 
// Class 2
// Helper class
class Array_imp {
 
    // Member variables of this class
    static int root = 0;
    static String[] str = new String[10];
 
    // Method 1
    // Creating root node
    public void Root(String key) { str[0] = key; }
 
    // Method 2
    // Creating left son of root
    public void set_Left(String key, int root)
    {
        int t = (root * 2) + 1;
 
        if (str[root] == null) {
            System.out.printf(
                "Can't set child at %d, no parent found\n",
                t);
        }
        else {
            str[t] = key;
        }
    }
 
    // Method 3
    // Creating right son of root
    public void set_Right(String key, int root)
    {
        int t = (root * 2) + 2;
 
        if (str[root] == null) {
            System.out.printf(
                "Can't set child at %d, no parent found\n",
                t);
        }
        else {
            str[t] = key;
        }
    }
 
    // Method 4
    // To print our tree
    public void print_Tree()
    {
 
        // Iterating using for loop
        for (int i = 0; i < 10; i++) {
            if (str[i] != null)
                System.out.print(str[i]);
            else
                System.out.print("-");
        }
    }
}

C#

// C# implementation of tree using array
// numbering starting from 0 to n-1.
using System;
 
public class Tree {
    public static void Main(String[] args)
    {
        Array_imp obj = new Array_imp();
        obj.Root("A");
        // obj.set_Left("B", 0);
        obj.set_Right("C", 0);
        obj.set_Left("D", 1);
        obj.set_Right("E", 1);
        obj.set_Left("F", 2);
        obj.print_Tree();
    }
}
 
class Array_imp {
    static int root = 0;
    static String[] str = new String[10];
 
    /*create root*/
    public void Root(String key)
    {
        str[0] = key;
    }
 
    /*create left son of root*/
    public void set_Left(String key, int root)
    {
        int t = (root * 2) + 1;
 
        if (str[root] == null) {
            Console.Write("Can't set child at {0}, no parent found\n", t);
        }
        else {
            str[t] = key;
        }
    }
 
    /*create right son of root*/
    public void set_Right(String key, int root)
    {
        int t = (root * 2) + 2;
 
        if (str[root] == null) {
            Console.Write("Can't set child at {0}, no parent found\n", t);
        }
        else {
            str[t] = key;
        }
    }
 
    public void print_Tree()
    {
        for (int i = 0; i < 10; i++) {
            if (str[i] != null)
                Console.Write(str[i]);
            else
                Console.Write("-");
        }
    }
}
 
// This code contributed by Rajput-Ji

Python3

# Python3 implementation of tree using array
# numbering starting from 0 to n-1.
tree = [None] * 10
 
 
def root(key):
    if tree[0] != None:
        print("Tree already had root")
    else:
        tree[0] = key
 
 
def set_left(key, parent):
    if tree[parent] == None:
        print("Can't set child at", (parent * 2) + 1, ", no parent found")
    else:
        tree[(parent * 2) + 1] = key
 
 
def set_right(key, parent):
    if tree[parent] == None:
        print("Can't set child at", (parent * 2) + 2, ", no parent found")
    else:
        tree[(parent * 2) + 2] = key
 
 
def print_tree():
    for i in range(10):
        if tree[i] != None:
            print(tree[i], end="")
        else:
            print("-", end="")
    print()
 
 
# Driver Code
root('A')
set_right('C', 0)
set_left('D', 1)
set_right('E', 1)
set_right('F', 2)
print_tree()
 
# This code is contributed by Gaurav Kumar Tailor
Producción

Can't set child at 3 , no parent found
Can't set child at 4 , no parent found
A-C---F---

Complejidad de tiempo : O (log n) desde que se usó el montón para crear un árbol binario

Complejidad espacial : O (n) para array

Publicación traducida automáticamente

Artículo escrito por sanjal_katiyar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *