Árbol de segmentos | (XOR de un rango dado)

Consideremos el siguiente problema para comprender los árboles de segmentos.
Tenemos una array arr[0 . . . n-1]. Deberíamos poder 
1 Encontrar el xor de los elementos del índice l a r donde 0 <= l <= r <= n-1.
2 Cambiar el valor de un elemento específico de la array a un nuevo valor x. Necesitamos hacer arr[i] = x donde 0 <= i <= n-1.
Similar a Suma del rango dado.

Una solución simple es ejecutar un ciclo de l a r y calcular xor de elementos en un rango dado. Para actualizar un valor, simplemente haga arr[i] = x. La primera operación toma el tiempo O(n) y la segunda operación toma el tiempo O(1).
Enfoque eficiente:
si el número de consultas y actualizaciones es igual, podemos realizar ambas operaciones en tiempo O (log n). Podemos usar un árbol de segmentos para hacer ambas operaciones en tiempo O (Iniciar sesión).
Representación de árboles de segmentos 
1. Los Nodes hoja son los elementos del arreglo de entrada. 
2. Cada Node interno representa alguna fusión de los Nodes hoja. La fusión puede ser diferente para diferentes problemas. Para este problema, fusionar es Xor de hojas debajo de un Node.
Se utiliza una representación de array de árbol para representar árboles de segmento. Para cada Node en el índice i, el hijo izquierdo está en el índice 2*i+1, el hijo derecho en 2*i+2 y el padre está en (i-1)/2.
 

Representation

Consulta de producto de rango dado 
Una vez que se construye el árbol, cómo obtener el Xor usando el árbol de segmento construido. El siguiente es un algoritmo para obtener el xor de elementos.
 

int getXor(node, l, r) 
{
   if range of node is within l and r
        return value in node
   else if range of node is completely outside l and r
        return 0
   else
    return getXor(node's left child, l, r) ^ 
           getXor(node's right child, l, r)
}

C++

// C++ program to show segment tree operations
// like construction, query and update
#include <bits/stdc++.h>
#include <math.h>
using namespace std;
 
// A utility function to get the middle
// index from corner indexes.
int getMid(int s, int e) {
    return s + (e - s)/2;
}
 
/* A recursive function to get the Xor of
values in given range of the array. The
following are parameters for this function.
    st --> Pointer to segment tree
    si --> Index of current node in the segment tree.
           Initially 0 is passed as root is always
           at index 0.
    ss & se --> Starting and ending indexes of
                the segment represented by current
                node, i.e., st[si]
    qs & qe --> Starting and ending indexes of
                query range */
int getXorUtil(int *st, int ss, int se, int qs,
               int qe, int si)
{
    // If segment of this node is a part of given
    // range, then return the Xor of the segment
    if (qs <= ss && qe >= se)
        return st[si];
 
    // If segment of this node is outside
    // the given range
    if (se < qs || ss > qe)
        return 0;
 
    // If a part of this segment overlaps
    // with the given range
    int mid = getMid(ss, se);
    return getXorUtil(st, ss, mid, qs, qe, 2*si+1) ^
        getXorUtil(st, mid+1, se, qs, qe, 2*si+2);
}
 
/* A recursive function to update the nodes
which have the given index in their range.
The following are parameters
    st, si, ss and se are same as getXorUtil()
    i --> index of the element to be updated.
          This index is    in input array.*/
void updateValueUtil(int *st, int ss, int se, int i,
                     int prev_val, int new_val, int si)
{
    // Base Case: If the input index lies outside
    // the range of this segment
    if (i < ss || i > se)
        return;
 
    // If the input index is in range of this node,
    // then update the value of the node and its children
    st[si] = (st[si]^prev_val)^new_val;
    if (se != ss)
    {
        int mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, prev_val,
                        new_val, 2*si + 1);
        updateValueUtil(st, mid+1, se, i, prev_val,
                        new_val, 2*si + 2);
    }
}
 
// The function to update a value in input
// array and segment tree. It uses updateValueUtil()
// to update the value in segment tree
void updateValue(int arr[], int *st, int n,
                 int i, int new_val)
{
    // Check for erroneous input index
    if (i < 0 || i > n-1)
    {
        printf("Invalid Input");
        return;
    }
    int temp = arr[i];
    // Update the value in array
    arr[i] = new_val;
 
    // Update the values of nodes in segment tree
    updateValueUtil(st, 0, n-1, i, temp, new_val, 0);
}
 
// Return Xor of elements in range from index qs (query start)
// to qe (query end). It mainly uses getXorUtil()
int getXor(int *st, int n, int qs, int qe)
{
    // Check for erroneous input values
    if (qs < 0 || qe > n-1 || qs > qe)
    {
        printf("Invalid Input");
        return 0;
    }
 
    return getXorUtil(st, 0, n-1, qs, qe, 0);
}
 
// A recursive function that constructs
// Segment Tree for array[ss..se]. si is
// index of current node in segment tree st
int constructSTUtil(int arr[], int ss, int se,
                    int *st, int si)
{
    // If there is one element in array,
    // store it in current node of segment
    // tree and return
    if (ss == se)
    {
        st[si] = arr[ss];
        return arr[ss];
    }
 
    // If there are more than one elements,
    // then recur for left and right subtrees
    // and store the Xor of values in this node
    int mid = getMid(ss, se);
    st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) ^
            constructSTUtil(arr, mid+1, se, st, si*2+2);
    return st[si];
}
 
/* Function to construct segment tree from given array.
This function allocates memory for segment tree and
calls constructSTUtil() to fill the allocated memory */
int *constructST(int arr[], int n)
{
    // Allocate memory for segment tree
 
    // Height of segment tree
    int x = (int)(ceil(log2(n)));
 
    // Maximum size of segment tree
    int max_size = 2*(int)pow(2, x) - 1;
 
    // Allocate memory
    int *st = new int[max_size];
 
    // Fill the allocated memory st
    constructSTUtil(arr, 0, n-1, st, 0);
 
    // Return the constructed segment tree
    return st;
}
 
// Driver program to test above functions
int main()
{
    int arr[] = {1, 3, 5, 7, 9, 11};
    int n = sizeof(arr)/sizeof(arr[0]);
 
    // Build segment tree from given array
    int *st = constructST(arr, n);
 
    // Print Xor of values in array from index 1 to 3
    printf("Xor of values in given range = %d\n",
            getXor(st, n, 0, 2));
 
    // Update: set arr[1] = 10 and update corresponding
    // segment tree nodes
    updateValue(arr, st, n, 1, 10);
 
    // Find Xor after the value is updated
    printf("Updated Xor of values in given range = %d\n",
            getXor(st, n, 0, 2));
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG {
 
    // A utility function to get the middle
    // index from corner indexes.
    static int getMid(int s, int e) {
        return s + (e - s) / 2;
    }
 
    /*
    * A recursive function to get the Xor of
    * values in given range of the array. The
    * following are parameters for this function.
    * st --> Pointer to segment tree
    * si --> Index of current node in the segment tree.
    *     Initially 0 is passed as root is always
    *     at index 0.
    * ss & se --> Starting and ending indexes of
    *             the segment represented by current
    *             node, i.e., st[si]
    * qs & qe --> Starting and ending indexes of
    *             query range
    */
    static int getXorUtil(int[] st, int ss, int se,
                           int qs, int qe, int si)
    {
        // If segment of this node is a part of given
        // range, then return the Xor of the segment
        if (qs <= ss && qe >= se)
            return st[si];
 
        // If segment of this node is outside
        // the given range
        if (se < qs || ss > qe)
            return 0;
 
        // If a part of this segment overlaps
        // with the given range
        int mid = getMid(ss, se);
        return getXorUtil(st, ss, mid, qs, qe, 2 * si + 1) ^
               getXorUtil(st, mid + 1, se, qs, qe, 2 * si + 2);
    }
 
    /*
    * A recursive function to update the nodes
    * which have the given index in their range.
    * The following are parameters
    * st, si, ss and se are same as getXorUtil()
    * i --> index of the element to be updated.
    *     This index is in input array.
    */
    static void updateValueUtil(int[] st, int ss, int se, int i,
                                int prev_val, int new_val, int si)
    {
        // Base Case: If the input index lies outside
        // the range of this segment
        if (i < ss || i > se)
            return;
 
        // If the input index is in range of this node,
        // then update the value of the node and its children
        st[si] = (st[si] ^ prev_val) ^ new_val;
        if (se != ss) {
            int mid = getMid(ss, se);
            updateValueUtil(st, ss, mid, i, prev_val,
                            new_val, 2 * si + 1);
            updateValueUtil(st, mid + 1, se, i, prev_val,
                            new_val, 2 * si + 2);
        }
    }
 
    // The function to update a value in input
    // array and segment tree. It uses updateValueUtil()
    // to update the value in segment tree
    static void updateValue(int arr[], int[] st, int n,
                            int i, int new_val)
    {
        // Check for erroneous input index
        if (i < 0 || i > n - 1) {
            System.out.printf("Invalid Input\n");
            return;
        }
        int temp = arr[i];
        // Update the value in array
        arr[i] = new_val;
 
        // Update the values of nodes in segment tree
        updateValueUtil(st, 0, n - 1, i, temp, new_val, 0);
    }
 
    // Return Xor of elements in range from index qs (query start)
    // to qe (query end). It mainly uses getXorUtil()
    static int getXor(int[] st, int n, int qs, int qe)
    {
         
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            System.out.printf("Invalid Input\n");
            return 0;
        }
 
        return getXorUtil(st, 0, n - 1, qs, qe, 0);
    }
 
    // A recursive function that constructs
    // Segment Tree for array[ss..se]. si is
    // index of current node in segment tree st
    static int constructSTUtil(int arr[], int ss, int se,
                                int[] st, int si)
    {
        // If there is one element in array,
        // store it in current node of segment
        // tree and return
        if (ss == se)
        {
            st[si] = arr[ss];
            return arr[ss];
        }
 
        // If there are more than one elements,
        // then recur for left and right subtrees
        // and store the Xor of values in this node
        int mid = getMid(ss, se);
        st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) ^
                constructSTUtil(arr, mid + 1, se, st, si * 2 + 2);
        return st[si];
    }
 
    /*
    * Function to construct segment tree from given array.
    * This function allocates memory for segment tree and
    * calls constructSTUtil() to fill the allocated memory
    */
    static int[] constructST(int arr[], int n)
    {
        // Allocate memory for segment tree
 
        // Height of segment tree
        int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
 
        // Maximum size of segment tree
        int max_size = 2 * (int) Math.pow(2, x) - 1;
 
        // Allocate memory
        int[] st = new int[max_size];
 
        // Fill the allocated memory st
        constructSTUtil(arr, 0, n - 1, st, 0);
 
        // Return the constructed segment tree
        return st;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 1, 3, 5, 7, 9, 11 };
        int n = arr.length;
 
        // Build segment tree from given array
        int[] st = constructST(arr, n);
 
        // Print Xor of values in array from index 1 to 3
        System.out.printf("Xor of values in given range = %d\n",
                            getXor(st, n, 0, 2));
 
        // Update: set arr[1] = 10 and update corresponding
        // segment tree nodes
        updateValue(arr, st, n, 1, 10);
 
        // Find Xor after the value is updated
        System.out.printf("Updated Xor of values in given range = %d\n",
                            getXor(st, n, 0, 2));
    }
}
 
// This code is contributed by
// sanjeev2552

Python3

# Python3 program to show segment tree operations
# like construction, query and update
from math import ceil, log2;
 
# A utility function to get the middle
# index from corner indexes.
def getMid(s, e) :
    return s + (e - s) // 2;
 
""" A recursive function to get the Xor of
values in given range of the array. The
following are parameters for this function.
    st --> Pointer to segment tree
    si --> Index of current node in the segment tree.
           Initially 0 is passed as root is always
           at index 0.
    ss & se --> Starting and ending indexes of
                the segment represented by current
                node, i.e., st[si]
    qs & qe --> Starting and ending indexes of
                query range """
def getXorUtil(st, ss, se, qs, qe, si) :
 
    # If segment of this node is a part of given
    # range, then return the Xor of the segment
    if (qs <= ss and qe >= se) :
        return st[si];
 
    # If segment of this node is outside
    # the given range
    if (se < qs or ss > qe) :
        return 0;
 
    # If a part of this segment overlaps
    # with the given range
    mid = getMid(ss, se);
     
    return getXorUtil(st, ss, mid, qs, qe, 2 * si + 1) ^ \
           getXorUtil(st, mid + 1, se, qs, qe, 2 * si + 2);
 
""" A recursive function to update the nodes
which have the given index in their range.
The following are parameters
st, si, ss and se are same as getXorUtil()
i --> index of the element to be updated.
      This index is in input array."""
def updateValueUtil(st, ss, se, i,
                    prev_val, new_val, si) :
     
    # Base Case: If the input index lies
    # outside the range of this segment
    if (i < ss or i > se) :
        return;
 
    # If the input index is in range of this node,
    # then update the value of the node and its children
    st[si] = (st[si] ^ prev_val) ^ new_val;
    if (se != ss) :
     
        mid = getMid(ss, se);
        updateValueUtil(st, ss, mid, i, prev_val,
                            new_val, 2 * si + 1);
        updateValueUtil(st, mid + 1, se, i,
            prev_val, new_val, 2 * si + 2);
     
# The function to update a value in input
# array and segment tree. It uses updateValueUtil()
# to update the value in segment tree
def updateValue(arr, st, n, i, new_val) :
 
    # Check for erroneous input index
    if (i < 0 or i > n - 1) :
 
        print("Invalid Input");
        return;
     
    temp = arr[i];
     
    # Update the value in array
    arr[i] = new_val;
 
    # Update the values of nodes in segment tree
    updateValueUtil(st, 0, n - 1, i, temp, new_val, 0);
 
# Return Xor of elements in range from
# index qs (query start) to qe (query end).
# It mainly uses getXorUtil()
def getXor(st, n, qs, qe) :
 
    # Check for erroneous input values
    if (qs < 0 or qe > n - 1 or qs > qe) :
        print("Invalid Input");
        return 0;
 
    return getXorUtil(st, 0, n - 1, qs, qe, 0);
 
# A recursive function that constructs
# Segment Tree for array[ss..se]. si is
# index of current node in segment tree st
def constructSTUtil(arr, ss, se, st, si) :
                         
    # If there is one element in array,
    # store it in current node of segment
    # tree and return
    if (ss == se) :
 
        st[si] = arr[ss];
        return arr[ss];
 
    # If there are more than one elements,
    # then recur for left and right subtrees
    # and store the Xor of values in this node
    mid = getMid(ss, se);
    st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) ^ \
             constructSTUtil(arr, mid + 1, se, st, si * 2 + 2);
     
    return st[si];
 
""" Function to construct segment tree from given array.
This function allocates memory for segment tree and
calls constructSTUtil() to fill the allocated memory """
def constructST(arr, n) :
 
    # Allocate memory for segment tree
 
    # Height of segment tree
    x = (int)(ceil(log2(n)));
 
    # Maximum size of segment tree
    max_size = 2 * (int)(2**x) - 1;
 
    # Allocate memory
    st = [0] * (max_size);
 
    # Fill the allocated memory st
    constructSTUtil(arr, 0, n - 1, st, 0);
 
    # Return the constructed segment tree
    return st;
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [1, 3, 5, 7, 9, 11];
    n = len(arr);
 
    # Build segment tree from given array
    st = constructST(arr, n);
 
    # Print Xor of values in array from index 1 to 3
    print("Xor of values in given range =",
                      getXor(st, n, 0, 2));
 
    # Update: set arr[1] = 10 and update
    # corresponding segment tree nodes
    updateValue(arr, st, n, 1, 10);
 
    # Find Xor after the value is updated
    print("Updated Xor of values in given range =",
                              getXor(st, n, 0, 2));
 
# This code is contributed by AnkitRai01

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
    // A utility function to get the middle
    // index from corner indexes.
    static int getMid(int s, int e)
    {
        return s + (e - s) / 2;
    }
 
    /*
    * A recursive function to get the Xor of
    * values in given range of the array. The
    * following are parameters for this function.
    * st --> Pointer to segment tree
    * si --> Index of current node in the segment tree.
    *     Initially 0 is passed as root is always
    *     at index 0.
    * ss & se --> Starting and ending indexes of
    *             the segment represented by current
    *             node, i.e., st[si]
    * qs & qe --> Starting and ending indexes of
    *             query range
    */
    static int getXorUtil(int[] st, int ss, int se,
                           int qs, int qe, int si)
    {
        // If segment of this node is a part of given
        // range, then return the Xor of the segment
        if (qs <= ss && qe >= se)
            return st[si];
 
        // If segment of this node is outside
        // the given range
        if (se < qs || ss > qe)
            return 0;
 
        // If a part of this segment overlaps
        // with the given range
        int mid = getMid(ss, se);
        return getXorUtil(st, ss, mid, qs, qe, 2 * si + 1) ^
               getXorUtil(st, mid + 1, se, qs, qe, 2 * si + 2);
    }
 
    /*
    * A recursive function to update the nodes
    * which have the given index in their range.
    * The following are parameters
    * st, si, ss and se are same as getXorUtil()
    * i --> index of the element to be updated.
    *     This index is in input array.
    */
    static void updateValueUtil(int[] st, int ss, int se, int i,
                                int prev_val, int new_val, int si)
    {
        // Base Case: If the input index lies outside
        // the range of this segment
        if (i < ss || i > se)
            return;
 
        // If the input index is in range of this node,
        // then update the value of the node and its children
        st[si] = (st[si] ^ prev_val) ^ new_val;
        if (se != ss)
        {
            int mid = getMid(ss, se);
            updateValueUtil(st, ss, mid, i, prev_val,
                            new_val, 2 * si + 1);
            updateValueUtil(st, mid + 1, se, i, prev_val,
                            new_val, 2 * si + 2);
        }
    }
 
    // The function to update a value in input
    // array and segment tree. It uses updateValueUtil()
    // to update the value in segment tree
    static void updateValue(int[] arr, int[] st, int n,
                            int i, int new_val)
    {
        // Check for erroneous input index
        if (i < 0 || i > n - 1)
        {
            Console.WriteLine("Invalid Input");
            return;
        }
        int temp = arr[i];
        // Update the value in array
        arr[i] = new_val;
 
        // Update the values of nodes in segment tree
        updateValueUtil(st, 0, n - 1, i, temp, new_val, 0);
    }
 
    // Return Xor of elements in range from index qs (query start)
    // to qe (query end). It mainly uses getXorUtil()
    static int getXor(int[] st, int n, int qs, int qe)
    {
 
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe)
        {
            Console.WriteLine("Invalid Input");
            return 0;
        }
 
        return getXorUtil(st, 0, n - 1, qs, qe, 0);
    }
 
    // A recursive function that constructs
    // Segment Tree for array[ss..se]. si is
    // index of current node in segment tree st
    static int constructSTUtil(int[] arr, int ss, int se,
                                int[] st, int si)
    {
        // If there is one element in array,
        // store it in current node of segment
        // tree and return
        if (ss == se)
        {
            st[si] = arr[ss];
            return arr[ss];
        }
 
        // If there are more than one elements,
        // then recur for left and right subtrees
        // and store the Xor of values in this node
        int mid = getMid(ss, se);
        st[si] = constructSTUtil(arr, ss, mid, st, si * 2 + 1) ^
                constructSTUtil(arr, mid + 1, se, st, si * 2 + 2);
        return st[si];
    }
 
    /*
    * Function to construct segment tree from given array.
    * This function allocates memory for segment tree and
    * calls constructSTUtil() to fill the allocated memory
    */
    static int[] constructST(int[] arr, int n)
    {
        // Allocate memory for segment tree
 
        // Height of segment tree
        int x = (int)(Math.Ceiling(Math.Log(n) / Math.Log(2)));
 
        // Maximum size of segment tree
        int max_size = 2 * (int)Math.Pow(2, x) - 1;
 
        // Allocate memory
        int[] st = new int[max_size];
 
        // Fill the allocated memory st
        constructSTUtil(arr, 0, n - 1, st, 0);
 
        // Return the constructed segment tree
        return st;
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { 1, 3, 5, 7, 9, 11 };
        int n = arr.Length;
 
        // Build segment tree from given array
        int[] st = constructST(arr, n);
 
        // Print Xor of values in array from index 1 to 3
        Console.WriteLine("Xor of values in given range = " +
                            getXor(st, n, 0, 2));
 
        // Update: set arr[1] = 10 and update corresponding
        // segment tree nodes
        updateValue(arr, st, n, 1, 10);
 
        // Find Xor after the value is updated
        Console.Write("Updated Xor of values in given range = " +
                            getXor(st, n, 0, 2));
    }
}
 
// This code is contributed by
// Saurabh Jaiswal

Producción: 

Xor of values in given range = 7
Updated Xor of values in given range = 14

Publicación traducida automáticamente

Artículo escrito por sahilkhoslaa y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *