Requisito previo: Fenwick Tree
Sabemos que para responder consultas de suma de rango en una array 1-D de manera eficiente, el árbol indexado binario (o Fenwick Tree) es la mejor opción (incluso mejor que el árbol de segmentos debido a que requiere menos memoria y es un poco más rápido que el árbol de segmentos). ).
¿Podemos responder consultas de suma de subarrays de manera eficiente utilizando el árbol indexado binario?
La respuesta es sí . Esto es posible utilizando un BIT 2D que no es más que una array de BIT 1D.
Algoritmo:
Consideramos el siguiente ejemplo. Supongamos que tenemos que encontrar la suma de todos los números dentro del área resaltada.
Asumimos el origen de la array en la parte inferior – O. Luego, un BIT 2D explota el hecho de que-
Sum under the marked area = Sum(OB) - Sum(OD) - Sum(OA) + Sum(OC)
En nuestro programa, usamos la función getSum(x, y) que encuentra la suma de la array de (0, 0) a (x, y).
De ahí la siguiente fórmula:
Sum under the marked area = Sum(OB) - Sum(OD) - Sum(OA) + Sum(OC) The above formula gets reduced to, Query(x1,y1,x2,y2) = getSum(x2, y2) - getSum(x2, y1-1) - getSum(x1-1, y2) + getSum(x1-1, y1-1)
donde,
x1, y1 = coordenadas x e y de C
x2, y2 = coordenadas x e y de B
La función actualizarBIT(x, y, val) actualiza todos los elementos bajo la región – (x, y) a (N, M ) donde,
N = máxima coordenada X de toda la array.
M = máxima coordenada Y de toda la array.
El resto del procedimiento es bastante similar al del árbol indexado binario 1D. A continuación se muestra la implementación en C++ del árbol indexado 2D
C++
/* C++ program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ #include<bits/stdc++.h> using namespace std; #define N 4 // N-->max_x and max_y // A structure to hold the queries struct Query { int x1, y1; // x and y co-ordinates of bottom left int x2, y2; // x and y co-ordinates of top right }; // A function to update the 2D BIT void updateBIT(int BIT[][N+1], int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (int yy=y; yy <= N; yy += (yy & -yy)) BIT[x][yy] += val; } return; } // A function to get sum from (0, 0) to (x, y) int getSum(int BIT[][N+1], int x, int y) { int sum = 0; for(; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for(int yy=y; yy > 0; yy -= yy&-yy) { sum += BIT[x][yy]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix void constructAux(int mat[][N], int aux[][N+1]) { // Initialise Auxiliary array to 0 for (int i=0; i<=N; i++) for (int j=0; j<=N; j++) aux[i][j] = 0; // Construct the Auxiliary Matrix for (int j=1; j<=N; j++) for (int i=1; i<=N; i++) aux[i][j] = mat[N-j][i-1]; return; } // A function to construct a 2D BIT void construct2DBIT(int mat[][N], int BIT[][N+1]) { // Create an auxiliary matrix int aux[N+1][N+1]; constructAux(mat, aux); // Initialise the BIT to 0 for (int i=1; i<=N; i++) for (int j=1; j<=N; j++) BIT[i][j] = 0; for (int j=1; j<=N; j++) { for (int i=1; i<=N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j-1); int v3 = getSum(BIT, i-1, j-1); int v4 = getSum(BIT, i-1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j]-(v1-v2-v4+v3)); } } return; } // A function to answer the queries void answerQueries(Query q[], int m, int BIT[][N+1]) { for (int i=0; i<m; i++) { int x1 = q[i].x1 + 1; int y1 = q[i].y1 + 1; int x2 = q[i].x2 + 1; int y2 = q[i].y2 + 1; int ans = getSum(BIT, x2, y2)-getSum(BIT, x2, y1-1)- getSum(BIT, x1-1, y2)+getSum(BIT, x1-1, y1-1); printf ("Query(%d, %d, %d, %d) = %d\n", q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return; } // Driver program int main() { int mat[N][N] = {{1, 2, 3, 4}, {5, 3, 8, 1}, {4, 6, 7, 5}, {2, 4, 8, 9}}; // Create a 2D Binary Indexed Tree int BIT[N+1][N+1]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} ---> 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ----> x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query q[] = {{1, 1, 3, 2}, {2, 3, 3, 3}, {1, 1, 1, 1}}; int m = sizeof(q)/sizeof(q[0]); answerQueries(q, m, BIT); return(0); }
Java
/* Java program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ class GFG { static final int N = 4; // N-.max_x and max_y // A structure to hold the queries static class Query { int x1, y1; // x and y co-ordinates of bottom left int x2, y2; // x and y co-ordinates of top right public Query(int x1, int y1, int x2, int y2) { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; } }; // A function to update the 2D BIT static void updateBIT(int BIT[][], int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (; y <= N; y += (y & -y)) BIT[x][y] += val; } return; } // A function to get sum from (0, 0) to (x, y) static int getSum(int BIT[][], int x, int y) { int sum = 0; for(; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for(; y > 0; y -= y&-y) { sum += BIT[x][y]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix static void constructAux(int mat[][], int aux[][]) { // Initialise Auxiliary array to 0 for (int i = 0; i <= N; i++) for (int j = 0; j <= N; j++) aux[i][j] = 0; // Construct the Auxiliary Matrix for (int j = 1; j <= N; j++) for (int i = 1; i <= N; i++) aux[i][j] = mat[N - j][i - 1]; return; } // A function to construct a 2D BIT static void construct2DBIT(int mat[][], int BIT[][]) { // Create an auxiliary matrix int [][]aux = new int[N + 1][N + 1]; constructAux(mat, aux); // Initialise the BIT to 0 for (int i = 1; i <= N; i++) for (int j = 1; j <= N; j++) BIT[i][j] = 0; for (int j = 1; j <= N; j++) { for (int i = 1; i <= N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j - 1); int v3 = getSum(BIT, i - 1, j - 1); int v4 = getSum(BIT, i - 1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j] - (v1 - v2 - v4 + v3)); } } return; } // A function to answer the queries static void answerQueries(Query q[], int m, int BIT[][]) { for (int i = 0; i < m; i++) { int x1 = q[i].x1 + 1; int y1 = q[i].y1 + 1; int x2 = q[i].x2 + 1; int y2 = q[i].y2 + 1; int ans = getSum(BIT, x2, y2) - getSum(BIT, x2, y1 - 1) - getSum(BIT, x1 - 1, y2) + getSum(BIT, x1 - 1, y1 - 1); System.out.printf("Query(%d, %d, %d, %d) = %d\n", q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return; } // Driver Code public static void main(String[] args) { int mat[][] = { {1, 2, 3, 4}, {5, 3, 8, 1}, {4, 6, 7, 5}, {2, 4, 8, 9} }; // Create a 2D Binary Indexed Tree int [][]BIT = new int[N + 1][N + 1]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query q[] = {new Query(1, 1, 3, 2), new Query(2, 3, 3, 3), new Query(1, 1, 1, 1)}; int m = q.length; answerQueries(q, m, BIT); } } // This code is contributed by 29AjayKumar
Python3
'''Python3 program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. ''' N = 4 # N-.max_x and max_y # A structure to hold the queries class Query: def __init__(self, x1,y1,x2,y2): self.x1 = x1; self.y1 = y1; self.x2 = x2; self.y2 = y2; # A function to update the 2D BIT def updateBIT(BIT,x,y,val): while x <= N: # This loop update all the 1D BIT inside the # array of 1D BIT = BIT[x] while y <= N: BIT[x][y] += val; y += (y & -y) x += (x & -x) return; # A function to get sum from (0, 0) to (x, y) def getSum(BIT,x,y): sum = 0; while x > 0: # This loop sum through all the 1D BIT # inside the array of 1D BIT = BIT[x] while y > 0: sum += BIT[x][y]; y -= y&-y x -= x&-x return sum; # A function to create an auxiliary matrix # from the given input matrix def constructAux(mat,aux): # Initialise Auxiliary array to 0 for i in range(N + 1): for j in range(N + 1): aux[i][j] = 0 # Construct the Auxiliary Matrix for j in range(1, N + 1): for i in range(1, N + 1): aux[i][j] = mat[N - j][i - 1]; return # A function to construct a 2D BIT def construct2DBIT(mat,BIT): # Create an auxiliary matrix aux = [None for i in range(N + 1)] for i in range(N + 1) : aux[i]= [None for i in range(N + 1)] constructAux(mat, aux) # Initialise the BIT to 0 for i in range(1, N + 1): for j in range(1, N + 1): BIT[i][j] = 0; for j in range(1, N + 1): for i in range(1, N + 1): # Creating a 2D-BIT using update function # everytime we/ encounter a value in the # input 2D-array v1 = getSum(BIT, i, j); v2 = getSum(BIT, i, j - 1); v3 = getSum(BIT, i - 1, j - 1); v4 = getSum(BIT, i - 1, j); # Assigning a value to a particular element # of 2D BIT updateBIT(BIT, i, j, aux[i][j] - (v1 - v2 - v4 + v3)); return; # A function to answer the queries def answerQueries(q,m,BIT): for i in range(m): x1 = q[i].x1 + 1; y1 = q[i].y1 + 1; x2 = q[i].x2 + 1; y2 = q[i].y2 + 1; ans = getSum(BIT, x2, y2) - \ getSum(BIT, x2, y1 - 1) - \ getSum(BIT, x1 - 1, y2) + \ getSum(BIT, x1 - 1, y1 - 1); print("Query (", q[i].x1, ", ", q[i].y1, ", ", q[i].x2, ", " , q[i].y2, ") = " ,ans, sep = "") return; # Driver Code mat= [[1, 2, 3, 4], [5, 3, 8, 1], [4, 6, 7, 5], [2, 4, 8, 9]]; # Create a 2D Binary Indexed Tree BIT = [None for i in range(N + 1)] for i in range(N + 1): BIT[i]= [None for i in range(N + 1)] for j in range(N + 1): BIT[i][j]=0 construct2DBIT(mat, BIT); ''' Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 ''' q = [Query(1, 1, 3, 2), Query(2, 3, 3, 3), Query(1, 1, 1, 1)]; m = len(q) answerQueries(q, m, BIT); # This code is contributed by phasing17
C#
/* C# program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by.Adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and.Adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ using System; class GFG { static readonly int N = 4; // N-.max_x and max_y // A structure to hold the queries public class Query { public int x1, y1; // x and y co-ordinates of bottom left public int x2, y2; // x and y co-ordinates of top right public Query(int x1, int y1, int x2, int y2) { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; } }; // A function to update the 2D BIT static void updateBIT(int [,]BIT, int x, int y, int val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (; y <= N; y += (y & -y)) BIT[x,y] += val; } return; } // A function to get sum from (0, 0) to (x, y) static int getSum(int [,]BIT, int x, int y) { int sum = 0; for(; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for(; y > 0; y -= y&-y) { sum += BIT[x, y]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix static void constructAux(int [,]mat, int [,]aux) { // Initialise Auxiliary array to 0 for (int i = 0; i <= N; i++) for (int j = 0; j <= N; j++) aux[i, j] = 0; // Construct the Auxiliary Matrix for (int j = 1; j <= N; j++) for (int i = 1; i <= N; i++) aux[i, j] = mat[N - j, i - 1]; return; } // A function to construct a 2D BIT static void construct2DBIT(int [,]mat, int [,]BIT) { // Create an auxiliary matrix int [,]aux = new int[N + 1, N + 1]; constructAux(mat, aux); // Initialise the BIT to 0 for (int i = 1; i <= N; i++) for (int j = 1; j <= N; j++) BIT[i, j] = 0; for (int j = 1; j <= N; j++) { for (int i = 1; i <= N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array int v1 = getSum(BIT, i, j); int v2 = getSum(BIT, i, j - 1); int v3 = getSum(BIT, i - 1, j - 1); int v4 = getSum(BIT, i - 1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i,j] - (v1 - v2 - v4 + v3)); } } return; } // A function to answer the queries static void answerQueries(Query []q, int m, int [,]BIT) { for (int i = 0; i < m; i++) { int x1 = q[i].x1 + 1; int y1 = q[i].y1 + 1; int x2 = q[i].x2 + 1; int y2 = q[i].y2 + 1; int ans = getSum(BIT, x2, y2) - getSum(BIT, x2, y1 - 1) - getSum(BIT, x1 - 1, y2) + getSum(BIT, x1 - 1, y1 - 1); Console.Write("Query({0}, {1}, {2}, {3}) = {4}\n", q[i].x1, q[i].y1, q[i].x2, q[i].y2, ans); } return; } // Driver Code public static void Main(String[] args) { int [,]mat = { {1, 2, 3, 4}, {5, 3, 8, 1}, {4, 6, 7, 5}, {2, 4, 8, 9} }; // Create a 2D Binary Indexed Tree int [,]BIT = new int[N + 1,N + 1]; construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ Query []q = {new Query(1, 1, 3, 2), new Query(2, 3, 3, 3), new Query(1, 1, 1, 1)}; int m = q.Length; answerQueries(q, m, BIT); } } // This code is contributed by Rajput-Ji
Javascript
<script> /* Javascript program to implement 2D Binary Indexed Tree 2D BIT is basically a BIT where each element is another BIT. Updating by adding v on (x, y) means it's effect will be found throughout the rectangle [(x, y), (max_x, max_y)], and query for (x, y) gives you the result of the rectangle [(0, 0), (x, y)], assuming the total rectangle is [(0, 0), (max_x, max_y)]. So when you query and update on this BIT,you have to be careful about how many times you are subtracting a rectangle and adding it. Simple set union formula works here. So if you want to get the result of a specific rectangle [(x1, y1), (x2, y2)], the following steps are necessary: Query(x1,y1,x2,y2) = getSum(x2, y2)-getSum(x2, y1-1) - getSum(x1-1, y2)+getSum(x1-1, y1-1) Here 'Query(x1,y1,x2,y2)' means the sum of elements enclosed in the rectangle with bottom-left corner's co-ordinates (x1, y1) and top-right corner's co-ordinates - (x2, y2) Constraints -> x1<=x2 and y1<=y2 /\ y | | --------(x2,y2) | | | | | | | | | | --------- | (x1,y1) | |___________________________ (0, 0) x--> In this program we have assumed a square matrix. The program can be easily extended to a rectangular one. */ let N = 4; // N-.max_x and max_y // A structure to hold the queries class Query { constructor(x1,y1,x2,y2) { this.x1 = x1; this.y1 = y1; this.x2 = x2; this.y2 = y2; } } // A function to update the 2D BIT function updateBIT(BIT,x,y,val) { for (; x <= N; x += (x & -x)) { // This loop update all the 1D BIT inside the // array of 1D BIT = BIT[x] for (; y <= N; y += (y & -y)) BIT[x][y] += val; } return; } // A function to get sum from (0, 0) to (x, y) function getSum(BIT,x,y) { let sum = 0; for(; x > 0; x -= x&-x) { // This loop sum through all the 1D BIT // inside the array of 1D BIT = BIT[x] for(; y > 0; y -= y&-y) { sum += BIT[x][y]; } } return sum; } // A function to create an auxiliary matrix // from the given input matrix function constructAux(mat,aux) { // Initialise Auxiliary array to 0 for (let i = 0; i <= N; i++) for (let j = 0; j <= N; j++) aux[i][j] = 0; // Construct the Auxiliary Matrix for (let j = 1; j <= N; j++) for (let i = 1; i <= N; i++) aux[i][j] = mat[N - j][i - 1]; return; } // A function to construct a 2D BIT function construct2DBIT(mat,BIT) { // Create an auxiliary matrix let aux = new Array(N + 1); for(let i=0;i<(N+1);i++) { aux[i]=new Array(N+1); } constructAux(mat, aux); // Initialise the BIT to 0 for (let i = 1; i <= N; i++) for (let j = 1; j <= N; j++) BIT[i][j] = 0; for (let j = 1; j <= N; j++) { for (let i = 1; i <= N; i++) { // Creating a 2D-BIT using update function // everytime we/ encounter a value in the // input 2D-array let v1 = getSum(BIT, i, j); let v2 = getSum(BIT, i, j - 1); let v3 = getSum(BIT, i - 1, j - 1); let v4 = getSum(BIT, i - 1, j); // Assigning a value to a particular element // of 2D BIT updateBIT(BIT, i, j, aux[i][j] - (v1 - v2 - v4 + v3)); } } return; } // A function to answer the queries function answerQueries(q,m,BIT) { for (let i = 0; i < m; i++) { let x1 = q[i].x1 + 1; let y1 = q[i].y1 + 1; let x2 = q[i].x2 + 1; let y2 = q[i].y2 + 1; let ans = getSum(BIT, x2, y2) - getSum(BIT, x2, y1 - 1) - getSum(BIT, x1 - 1, y2) + getSum(BIT, x1 - 1, y1 - 1); document.write("Query ("+q[i].x1+", " +q[i].y1+", " +q[i].x2+", " +q[i].y2+") = " +ans+"<br>"); } return; } // Driver Code let mat= [[1, 2, 3, 4], [5, 3, 8, 1], [4, 6, 7, 5], [2, 4, 8, 9]]; // Create a 2D Binary Indexed Tree let BIT = new Array(N + 1); for(let i=0;i<(N+1);i++) { BIT[i]=new Array(N+1); for(let j=0;j<(N+1);j++) { BIT[i][j]=0; } } construct2DBIT(mat, BIT); /* Queries of the form - x1, y1, x2, y2 For example the query- {1, 1, 3, 2} means the sub-matrix- y /\ 3 | 1 2 3 4 Sub-matrix 2 | 5 3 8 1 {1,1,3,2} --. 3 8 1 1 | 4 6 7 5 6 7 5 0 | 2 4 8 9 | --|------ 0 1 2 3 ---. x | Hence sum of the sub-matrix = 3+8+1+6+7+5 = 30 */ let q = [new Query(1, 1, 3, 2), new Query(2, 3, 3, 3), new Query(1, 1, 1, 1)]; let m = q.length; answerQueries(q, m, BIT); // This code is contributed by rag2127 </script>
Query(1, 1, 3, 2) = 30 Query(2, 3, 3, 3) = 7 Query(1, 1, 1, 1) = 6
Complejidad del tiempo:
- Tanto la función updateBIT(x, y, val) como la función getSum(x, y) tardan O(log(NM)).
- La construcción del BIT 2D requiere O(NM log(NM)).
- Dado que en cada una de las consultas llamamos a la función getSum(x, y), por lo que responder a todas las consultas Q lleva O(Q.log(NM)) tiempo.
Por lo tanto, la complejidad de tiempo general del programa es O((NM+Q).log(NM)) donde,
N = máxima coordenada X de toda la array.
M = máxima coordenada Y de toda la array.
Q = Número de consultas.
Espacio auxiliar: O(NM) para almacenar el BIT y la array auxiliar
Referencias: https://www.topcoder.com/community/data-science/data-science-tutorials/binary-indexed-trees/
Este artículo es una contribución de Rachit Belwariar . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA