Dado que aquí hay un rectángulo de largo l y ancho b , la tarea es encontrar el área de la elipse más grande que se puede inscribir dentro de él.
Ejemplos:
Input: l = 5, b = 3 Output: 11.775 Input: 7, b = 4 Output: 21.98
Enfoque :
- Sea, la longitud del eje mayor de la elipse = 2x y la longitud del eje menor de la elipse = 2y
- Del diagrama, es muy claro que,
2x = l
2y = b
- Entonces, Área de la elipse = (π * x * y) = (π * l * b) / 4
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find the biggest ellipse // which can be inscribed within the rectangle #include <bits/stdc++.h> using namespace std; // Function to find the area // of the ellipse float ellipse(float l, float b) { // The sides cannot be negative if (l < 0 || b < 0) return -1; // Area of the ellipse float x = (3.14 * l * b) / 4; return x; } // Driver code int main() { float l = 5, b = 3; cout << ellipse(l, b) << endl; return 0; }
Java
// Java Program to find the biggest rectangle // which can be inscribed within the ellipse import java.util.*; import java.lang.*; import java.io.*; class GFG { // Function to find the area // of the rectangle static float ellipse(float l, float b) { // a and b cannot be negative if (l < 0 || b < 0) return -1; float x = (float)(3.14 * l * b) / 4; return x; } // Driver code public static void main(String args[]) { float a = 5, b = 3; System.out.println(ellipse(a, b)); } } // This code is contributed // by Mohit Kumar
Python3
# Python3 Program to find the biggest ellipse # which can be inscribed within the rectangle # Function to find the area # of the ellipse def ellipse(l, b): # The sides cannot be negative if l < 0 or b < 0: return -1 # Area of the ellipse x = (3.14 * l * b) / 4 return x # Driver code if __name__ == "__main__": l, b = 5, 3 print(ellipse(l, b)) # This code is contributed # by Rituraj Jain
C#
// C# Program to find the biggest rectangle // which can be inscribed within the ellipse using System; class GFG { // Function to find the area // of the rectangle static float ellipse(float l, float b) { // a and b cannot be negative if (l < 0 || b < 0) return -1; float x = (float)(3.14 * l * b) / 4; return x; } // Driver code public static void Main() { float a = 5, b = 3; Console.WriteLine(ellipse(a, b)); } } // This code is contributed // by Code_Mech.
PHP
<?php // PHP Program to find the biggest ellipse // which can be inscribed within the rectangle // Function to find the area // of the ellipse function ellipse($l, $b) { // The sides cannot be negative if ($l < 0 || $b < 0) return -1; // Area of the ellipse $x = (3.14 * $l * $b) / 4; return $x; } // Driver code $l = 5; $b = 3; echo ellipse($l, $b) . "\n"; // This code is contributed // by Akanksha Rai ?>
Javascript
<script> // javascript Program to find the biggest rectangle // which can be inscribed within the ellipse // Function to find the area // of the rectangle function ellipse(l , b) { // a and b cannot be negative if (l < 0 || b < 0) return -1; var x = (3.14 * l * b) / 4; return x; } // Driver code var a = 5, b = 3; document.write(ellipse(a, b)); // This code is contributed by Amit Katiyar </script>
Producción:
11.775
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA