área de un hexágono

Un hexágono es una figura geométrica bidimensional de 6 lados. El total de los ángulos internos de cualquier hexágono es 720°. Un hexágono regular tiene 6 simetrías de rotación y 6 simetrías de reflexión. Todos los ángulos internos son de 120 grados. 
 

Area of Hexagon

Ejemplos: 
 

Input: 4
Output: 41.5692

Input: 6
Output: 93.5307

Número de vértices: 6 
Número de aristas: 6 
Ángulo interno: 120° 
Área = (3 √3(n) 2 ) / 2

¿Cómo funciona la fórmula? Hay principalmente 6 triángulos equiláteros de lado n y el área de un triángulo equilátero es (sqrt(3)/4) * n * n. Dado que en el hexágono hay un total de 6 triángulos equiláteros de lado n, el área del hexágono se convierte en (3*sqrt(3)/2) * n * n
 

C++

// CPP program to find
// area of a Hexagon
#include <iostream>
#include <math.h>
using namespace std;
 
// function for calculating
// area of the hexagon.
double hexagonArea(double s)
{
    return ((3 * sqrt(3) *
            (s * s)) / 2);    
}
 
// Driver Code
int main()
{
    // Length of a side
    double s = 4;
    cout << "Area : "
         << hexagonArea(s);
    return 0;
}

Java

class GFG
{
    // Create a function for calculating
    // the area of the hexagon.
    public static double hexagonArea(double s)
    {
        return ((3 * Math.sqrt(3) *
                (s * s)) / 2);
    }
         
    // Driver Code
    public static void main(String[] args)
    {    
        // Length of a side
        double s = 4;     
        System.out.print("Area: " +
                          hexagonArea(s) );
    }
}

Python3

# Python3 program to find
# area of a Hexagon
import math
 
# Function for calculating
# area of the hexagon.
def hexagonArea(s):
     
    return ((3 * math.sqrt(3) *
            (s * s)) / 2);
     
# Driver code    
if __name__ == "__main__" :
 
    # length of a side.
    s = 4
 
    print("Area:","{0:.4f}" .
           format(hexagonArea(s)))
 
# This code is contributed by Naman_Garg

C#

// C# program to find
// area of a Hexagon
using System;
 
class GFG
{
     
    // Create a function for calculating
    // the area of the hexagon.
    public static double hexagonArea(double s)
    {
        return ((3 * Math.Sqrt(3) *
                (s * s)) / 2);
    }
         
    // Driver Code
    public static void Main()
    {
        // Length of a side
        double s = 4;
         
        Console.WriteLine("Area: " +
                           hexagonArea(s) );
    }
}
 
// This code is contributed by vt_m.

PHP

<?php
// PHP program to find
// area of a Hexagon
 
// function for calculating
// area of the hexagon.
function hexagonArea( $s)
{
    return ((3 * sqrt(3) *
            ($s * $s)) / 2);
}
 
// Driver Code
 
// Length of a side
$s = 4;
echo("Area : ");
echo(hexagonArea($s));
 
// This code is contributed by vt_m.
?>

Javascript

<script>
 
// Javascript program to find
// area of a Hexagon
 
// function for calculating
// area of the hexagon.
function hexagonArea(s)
{
    return ((3 * Math.sqrt(3) *
            (s * s)) / 2);    
}
 
// Driver Code
  
    // Length of a side
    let s = 4;
    document.write("Area : "
        + hexagonArea(s));
 
// This code is contributed by Mayank Tyagi
</script>

Producción : 
 

Area: 41.5692

Tiempo Complejidad: O(1) 
Espacio Auxiliar: O(1)
 

Publicación traducida automáticamente

Artículo escrito por Harshita Pandey y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *