Dado que aquí hay un hexágono regular, de lado a , la tarea es encontrar el área del triángulo más grande que se puede inscribir en él.
Ejemplos:
Input: a = 6 Output: area = 46.7654 Input: a = 8 Output: area = 83.1384
Enfoque :
Está muy claro que el triángulo más grande que se puede inscribir dentro del hexágono es un triángulo equilátero.
En el triángulo ACD ,
siguiendo el teorema de Pitágoras,
(a/2)^2 + (b/2)^2 = a^2
b^2/4 = 3a^2/4
Entonces, b = a√3
Por lo tanto, el área del triángulo, A = √3(a√3)^2/4= 3√3a^2/4
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find the biggest triangle // which can be inscribed within the hexagon #include <bits/stdc++.h> using namespace std; // Function to find the area // of the triangle float trianglearea(float a) { // side cannot be negative if (a < 0) return -1; // area of the triangle float area = (3 * sqrt(3) * pow(a, 2)) / 4; return area; } // Driver code int main() { float a = 6; cout << trianglearea(a) << endl; return 0; }
Java
// Java Program to find the biggest triangle // which can be inscribed within the hexagon import java.io.*; class GFG { // Function to find the area // of the triangle static double trianglearea(double a) { // side cannot be negative if (a < 0) return -1; // area of the triangle double area = (3 * Math.sqrt(3) * Math.pow(a, 2)) / 4; return area; } public static void main (String[] args) { double a = 6; System.out.println (trianglearea(a)); } //This Code is contributed by Sachin.. }
Python3
# Python3 Program to find the biggest triangle # which can be inscribed within the hexagon import math # Function to find the area # of the triangle def trianglearea(a): # side cannot be negative if (a < 0): return -1; # area of the triangle area = (3 * math.sqrt(3) * math.pow(a, 2)) / 4; return area; # Driver code a = 6; print(trianglearea(a)) # This code is contributed # by Akanksha Rai
C#
// C# Program to find the biggest triangle // which can be inscribed within the hexagon using System; class GFG { // Function to find the area // of the triangle static double trianglearea(double a) { // side cannot be negative if (a < 0) return -1; // area of the triangle double area = (3 * Math.Sqrt(3) * Math.Pow(a, 2)) / 4; return Math.Round(area,4); } public static void Main () { double a = 6; Console.WriteLine(trianglearea(a)); } // This code is contributed by Ryuga }
PHP
<?php // PHP Program to find the biggest triangle // which can be inscribed within the hexagon // Function to find the area // of the triangle function trianglearea($a) { // side cannot be negative if ($a < 0) return -1; // area of the triangle $area = (3 * sqrt(3) * pow($a, 2)) / 4; return $area; } // Driver code $a = 6; echo trianglearea($a); // This code is contributed // by inder_verma ?>
Javascript
<script> // javascript Program to find the biggest triangle // which can be inscribed within the hexagon // Function to find the area // of the triangle function trianglearea(a) { // side cannot be negative if (a < 0) return -1; // area of the triangle var area = (3 * Math.sqrt(3) * Math.pow(a, 2)) / 4; return area.toFixed(4); } var a = 6; document.write(trianglearea(a)); // This code contributed by Princi Singh </script>
Producción:
46.7654
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA