Hemos discutido la inserción de AVL en la publicación anterior . En esta publicación, seguiremos un enfoque similar para la eliminación.
Pasos a seguir para su eliminación .
Para asegurarnos de que el árbol dado siga siendo AVL después de cada eliminación, debemos aumentar la operación de eliminación BST estándar para realizar un reequilibrio. Las siguientes son dos operaciones básicas que se pueden realizar para volver a equilibrar un BST sin violar la propiedad BST (teclas (izquierda) < tecla (raíz) < teclas (derecha)).
C++
// C++ program to delete a node from AVL Tree #include<bits/stdc++.h> using namespace std; // An AVL tree node class Node { public: int key; Node *left; Node *right; int height; }; // A utility function to get maximum // of two integers int max(int a, int b); // A utility function to get height // of the tree int height(Node *N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum // of two integers int max(int a, int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ Node* newNode(int key) { Node* node = new Node(); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially // added at leaf return(node); } // A utility function to right // rotate subtree rooted with y // See the diagram given above. Node *rightRotate(Node *y) { Node *x = y->left; Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // Return new root return x; } // A utility function to left // rotate subtree rooted with x // See the diagram given above. Node *leftRotate(Node *x) { Node *y = x->right; Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(Node *N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } Node* insert(Node* node, int key) { /* 1. Perform the normal BST rotation */ if (node == NULL) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ Node * minValueNode(Node* node) { Node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) current = current->left; return current; } // Recursive function to delete a node // with given key from subtree with // given root. It returns root of the // modified subtree. Node* deleteNode(Node* root, int key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == NULL) return root; // If the key to be deleted is smaller // than the root's key, then it lies // in left subtree if ( key < root->key ) root->left = deleteNode(root->left, key); // If the key to be deleted is greater // than the root's key, then it lies // in right subtree else if( key > root->key ) root->right = deleteNode(root->right, key); // if key is same as root's key, then // This is the node to be deleted else { // node with only one child or no child if( (root->left == NULL) || (root->right == NULL) ) { Node *temp = root->left ? root->left : root->right; // No child case if (temp == NULL) { temp = root; root = NULL; } else // One child case *root = *temp; // Copy the contents of // the non-empty child free(temp); } else { // node with two children: Get the inorder // successor (smallest in the right subtree) Node* temp = minValueNode(root->right); // Copy the inorder successor's // data to this node root->key = temp->key; // Delete the inorder successor root->right = deleteNode(root->right, temp->key); } } // If the tree had only one node // then return if (root == NULL) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root->height = 1 + max(height(root->left), height(root->right)); // STEP 3: GET THE BALANCE FACTOR OF // THIS NODE (to check whether this // node became unbalanced) int balance = getBalance(root); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root->left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root->left) < 0) { root->left = leftRotate(root->left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root->right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root->right) > 0) { root->right = rightRotate(root->right); return leftRotate(root); } return root; } // A utility function to print preorder // traversal of the tree. // The function also prints height // of every node void preOrder(Node *root) { if(root != NULL) { cout << root->key << " "; preOrder(root->left); preOrder(root->right); } } // Driver Code int main() { Node *root = NULL; /* Constructing tree given in the above figure */ root = insert(root, 9); root = insert(root, 5); root = insert(root, 10); root = insert(root, 0); root = insert(root, 6); root = insert(root, 11); root = insert(root, -1); root = insert(root, 1); root = insert(root, 2); /* The constructed AVL Tree would be 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 */ cout << "Preorder traversal of the " "constructed AVL tree is \n"; preOrder(root); root = deleteNode(root, 10); /* The AVL Tree after deletion of 10 1 / \ 0 9 / / \ -1 5 11 / \ 2 6 */ cout << "\nPreorder traversal after" << " deletion of 10 \n"; preOrder(root); return 0; } // This code is contributed by rathbhupendra
C
// C program to delete a node from AVL Tree #include<stdio.h> #include<stdlib.h> // An AVL tree node struct Node { int key; struct Node *left; struct Node *right; int height; }; // A utility function to get maximum of two integers int max(int a, int b); // A utility function to get height of the tree int height(struct Node *N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum of two integers int max(int a, int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ struct Node* newNode(int key) { struct Node* node = (struct Node*) malloc(sizeof(struct Node)); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially added at leaf return(node); } // A utility function to right rotate subtree rooted with y // See the diagram given above. struct Node *rightRotate(struct Node *y) { struct Node *x = y->left; struct Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right))+1; x->height = max(height(x->left), height(x->right))+1; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. struct Node *leftRotate(struct Node *x) { struct Node *y = x->right; struct Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right))+1; y->height = max(height(y->left), height(y->right))+1; // Return new root return y; } // Get Balance factor of node N int getBalance(struct Node *N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } struct Node* insert(struct Node* node, int key) { /* 1. Perform the normal BST rotation */ if (node == NULL) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ struct Node * minValueNode(struct Node* node) { struct Node* current = node; /* loop down to find the leftmost leaf */ while (current->left != NULL) current = current->left; return current; } // Recursive function to delete a node with given key // from subtree with given root. It returns root of // the modified subtree. struct Node* deleteNode(struct Node* root, int key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == NULL) return root; // If the key to be deleted is smaller than the // root's key, then it lies in left subtree if ( key < root->key ) root->left = deleteNode(root->left, key); // If the key to be deleted is greater than the // root's key, then it lies in right subtree else if( key > root->key ) root->right = deleteNode(root->right, key); // if key is same as root's key, then This is // the node to be deleted else { // node with only one child or no child if( (root->left == NULL) || (root->right == NULL) ) { struct Node *temp = root->left ? root->left : root->right; // No child case if (temp == NULL) { temp = root; root = NULL; } else // One child case *root = *temp; // Copy the contents of // the non-empty child free(temp); } else { // node with two children: Get the inorder // successor (smallest in the right subtree) struct Node* temp = minValueNode(root->right); // Copy the inorder successor's data to this node root->key = temp->key; // Delete the inorder successor root->right = deleteNode(root->right, temp->key); } } // If the tree had only one node then return if (root == NULL) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root->height = 1 + max(height(root->left), height(root->right)); // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to // check whether this node became unbalanced) int balance = getBalance(root); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root->left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root->left) < 0) { root->left = leftRotate(root->left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root->right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root->right) > 0) { root->right = rightRotate(root->right); return leftRotate(root); } return root; } // A utility function to print preorder traversal of // the tree. // The function also prints height of every node void preOrder(struct Node *root) { if(root != NULL) { printf("%d ", root->key); preOrder(root->left); preOrder(root->right); } } /* Driver program to test above function*/ int main() { struct Node *root = NULL; /* Constructing tree given in the above figure */ root = insert(root, 9); root = insert(root, 5); root = insert(root, 10); root = insert(root, 0); root = insert(root, 6); root = insert(root, 11); root = insert(root, -1); root = insert(root, 1); root = insert(root, 2); /* The constructed AVL Tree would be 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 */ printf("Preorder traversal of the constructed AVL " "tree is \n"); preOrder(root); root = deleteNode(root, 10); /* The AVL Tree after deletion of 10 1 / \ 0 9 / / \ -1 5 11 / \ 2 6 */ printf("\nPreorder traversal after deletion of 10 \n"); preOrder(root); return 0; }
Java
// Java program for deletion in AVL Tree class Node { int key, height; Node left, right; Node(int d) { key = d; height = 1; } } class AVLTree { Node root; // A utility function to get height of the tree int height(Node N) { if (N == null) return 0; return N.height; } // A utility function to get maximum of two integers int max(int a, int b) { return (a > b) ? a : b; } // A utility function to right rotate subtree rooted with y // See the diagram given above. Node rightRotate(Node y) { Node x = y.left; Node T2 = x.right; // Perform rotation x.right = y; y.left = T2; // Update heights y.height = max(height(y.left), height(y.right)) + 1; x.height = max(height(x.left), height(x.right)) + 1; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. Node leftRotate(Node x) { Node y = x.right; Node T2 = y.left; // Perform rotation y.left = x; x.right = T2; // Update heights x.height = max(height(x.left), height(x.right)) + 1; y.height = max(height(y.left), height(y.right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(Node N) { if (N == null) return 0; return height(N.left) - height(N.right); } Node insert(Node node, int key) { /* 1. Perform the normal BST rotation */ if (node == null) return (new Node(key)); if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node.height = 1 + max(height(node.left), height(node.right)); /* 3. Get the balance factor of this ancestor node to check whether this node became Wunbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then // there are 4 cases Left Left Case if (balance > 1 && key < node.left.key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node.right.key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node.left.key) { node.left = leftRotate(node.left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node.right.key) { node.right = rightRotate(node.right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ Node minValueNode(Node node) { Node current = node; /* loop down to find the leftmost leaf */ while (current.left != null) current = current.left; return current; } Node deleteNode(Node root, int key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == null) return root; // If the key to be deleted is smaller than // the root's key, then it lies in left subtree if (key < root.key) root.left = deleteNode(root.left, key); // If the key to be deleted is greater than the // root's key, then it lies in right subtree else if (key > root.key) root.right = deleteNode(root.right, key); // if key is same as root's key, then this is the node // to be deleted else { // node with only one child or no child if ((root.left == null) || (root.right == null)) { Node temp = null; if (temp == root.left) temp = root.right; else temp = root.left; // No child case if (temp == null) { temp = root; root = null; } else // One child case root = temp; // Copy the contents of // the non-empty child } else { // node with two children: Get the inorder // successor (smallest in the right subtree) Node temp = minValueNode(root.right); // Copy the inorder successor's data to this node root.key = temp.key; // Delete the inorder successor root.right = deleteNode(root.right, temp.key); } } // If the tree had only one node then return if (root == null) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root.height = max(height(root.left), height(root.right)) + 1; // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether // this node became unbalanced) int balance = getBalance(root); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root.left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root.left) < 0) { root.left = leftRotate(root.left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root.right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root.right) > 0) { root.right = rightRotate(root.right); return leftRotate(root); } return root; } // A utility function to print preorder traversal of // the tree. The function also prints height of every // node void preOrder(Node node) { if (node != null) { System.out.print(node.key + " "); preOrder(node.left); preOrder(node.right); } } public static void main(String[] args) { AVLTree tree = new AVLTree(); /* Constructing tree given in the above figure */ tree.root = tree.insert(tree.root, 9); tree.root = tree.insert(tree.root, 5); tree.root = tree.insert(tree.root, 10); tree.root = tree.insert(tree.root, 0); tree.root = tree.insert(tree.root, 6); tree.root = tree.insert(tree.root, 11); tree.root = tree.insert(tree.root, -1); tree.root = tree.insert(tree.root, 1); tree.root = tree.insert(tree.root, 2); /* The constructed AVL Tree would be 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 */ System.out.println("Preorder traversal of "+ "constructed tree is : "); tree.preOrder(tree.root); tree.root = tree.deleteNode(tree.root, 10); /* The AVL Tree after deletion of 10 1 / \ 0 9 / / \ -1 5 11 / \ 2 6 */ System.out.println(""); System.out.println("Preorder traversal after "+ "deletion of 10 :"); tree.preOrder(tree.root); } } // This code has been contributed by Mayank Jaiswal
Python3
# Python code to delete a node in AVL tree # Generic tree node class class TreeNode(object): def __init__(self, val): self.val = val self.left = None self.right = None self.height = 1 # AVL tree class which supports insertion, # deletion operations class AVL_Tree(object): def insert(self, root, key): # Step 1 - Perform normal BST if not root: return TreeNode(key) elif key < root.val: root.left = self.insert(root.left, key) else: root.right = self.insert(root.right, key) # Step 2 - Update the height of the # ancestor node root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right)) # Step 3 - Get the balance factor balance = self.getBalance(root) # Step 4 - If the node is unbalanced, # then try out the 4 cases # Case 1 - Left Left if balance > 1 and key < root.left.val: return self.rightRotate(root) # Case 2 - Right Right if balance < -1 and key > root.right.val: return self.leftRotate(root) # Case 3 - Left Right if balance > 1 and key > root.left.val: root.left = self.leftRotate(root.left) return self.rightRotate(root) # Case 4 - Right Left if balance < -1 and key < root.right.val: root.right = self.rightRotate(root.right) return self.leftRotate(root) return root # Recursive function to delete a node with # given key from subtree with given root. # It returns root of the modified subtree. def delete(self, root, key): # Step 1 - Perform standard BST delete if not root: return root elif key < root.val: root.left = self.delete(root.left, key) elif key > root.val: root.right = self.delete(root.right, key) else: if root.left is None: temp = root.right root = None return temp elif root.right is None: temp = root.left root = None return temp temp = self.getMinValueNode(root.right) root.val = temp.val root.right = self.delete(root.right, temp.val) # If the tree has only one node, # simply return it if root is None: return root # Step 2 - Update the height of the # ancestor node root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right)) # Step 3 - Get the balance factor balance = self.getBalance(root) # Step 4 - If the node is unbalanced, # then try out the 4 cases # Case 1 - Left Left if balance > 1 and self.getBalance(root.left) >= 0: return self.rightRotate(root) # Case 2 - Right Right if balance < -1 and self.getBalance(root.right) <= 0: return self.leftRotate(root) # Case 3 - Left Right if balance > 1 and self.getBalance(root.left) < 0: root.left = self.leftRotate(root.left) return self.rightRotate(root) # Case 4 - Right Left if balance < -1 and self.getBalance(root.right) > 0: root.right = self.rightRotate(root.right) return self.leftRotate(root) return root def leftRotate(self, z): y = z.right T2 = y.left # Perform rotation y.left = z z.right = T2 # Update heights z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right)) y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right)) # Return the new root return y def rightRotate(self, z): y = z.left T3 = y.right # Perform rotation y.right = z z.left = T3 # Update heights z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right)) y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right)) # Return the new root return y def getHeight(self, root): if not root: return 0 return root.height def getBalance(self, root): if not root: return 0 return self.getHeight(root.left) - self.getHeight(root.right) def getMinValueNode(self, root): if root is None or root.left is None: return root return self.getMinValueNode(root.left) def preOrder(self, root): if not root: return print("{0} ".format(root.val), end="") self.preOrder(root.left) self.preOrder(root.right) myTree = AVL_Tree() root = None nums = [9, 5, 10, 0, 6, 11, -1, 1, 2] for num in nums: root = myTree.insert(root, num) # Preorder Traversal print("Preorder Traversal after insertion -") myTree.preOrder(root) print() # Delete key = 10 root = myTree.delete(root, key) # Preorder Traversal print("Preorder Traversal after deletion -") myTree.preOrder(root) print() # This code is contributed by Ajitesh Pathak
C#
// C# program for deletion in AVL Tree using System; public class Node { public int key, height; public Node left, right; public Node(int d) { key = d; height = 1; } } public class AVLTree { Node root; // A utility function to get height of the tree int height(Node N) { if (N == null) return 0; return N.height; } // A utility function to // get maximum of two integers int max(int a, int b) { return (a > b) ? a : b; } // A utility function to right // rotate subtree rooted with y // See the diagram given above. Node rightRotate(Node y) { Node x = y.left; Node T2 = x.right; // Perform rotation x.right = y; y.left = T2; // Update heights y.height = max(height(y.left), height(y.right)) + 1; x.height = max(height(x.left), height(x.right)) + 1; // Return new root return x; } // A utility function to left // rotate subtree rooted with x // See the diagram given above. Node leftRotate(Node x) { Node y = x.right; Node T2 = y.left; // Perform rotation y.left = x; x.right = T2; // Update heights x.height = max(height(x.left), height(x.right)) + 1; y.height = max(height(y.left), height(y.right)) + 1; // Return new root return y; } // Get Balance factor of node N int getBalance(Node N) { if (N == null) return 0; return height(N.left) - height(N.right); } Node insert(Node node, int key) { /* 1. Perform the normal BST rotation */ if (node == null) return (new Node(key)); if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node.height = 1 + max(height(node.left), height(node.right)); /* 3. Get the balance factor of this ancestor node to check whether this node became Wunbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then // there are 4 cases Left Left Case if (balance > 1 && key < node.left.key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node.right.key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node.left.key) { node.left = leftRotate(node.left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node.right.key) { node.right = rightRotate(node.right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ Node minValueNode(Node node) { Node current = node; /* loop down to find the leftmost leaf */ while (current.left != null) current = current.left; return current; } Node deleteNode(Node root, int key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == null) return root; // If the key to be deleted is smaller than // the root's key, then it lies in left subtree if (key < root.key) root.left = deleteNode(root.left, key); // If the key to be deleted is greater than the // root's key, then it lies in right subtree else if (key > root.key) root.right = deleteNode(root.right, key); // if key is same as root's key, then this is the node // to be deleted else { // node with only one child or no child if ((root.left == null) || (root.right == null)) { Node temp = null; if (temp == root.left) temp = root.right; else temp = root.left; // No child case if (temp == null) { temp = root; root = null; } else // One child case root = temp; // Copy the contents of // the non-empty child } else { // node with two children: Get the inorder // successor (smallest in the right subtree) Node temp = minValueNode(root.right); // Copy the inorder successor's data to this node root.key = temp.key; // Delete the inorder successor root.right = deleteNode(root.right, temp.key); } } // If the tree had only one node then return if (root == null) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root.height = max(height(root.left), height(root.right)) + 1; // STEP 3: GET THE BALANCE FACTOR // OF THIS NODE (to check whether // this node became unbalanced) int balance = getBalance(root); // If this node becomes unbalanced, // then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root.left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root.left) < 0) { root.left = leftRotate(root.left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root.right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root.right) > 0) { root.right = rightRotate(root.right); return leftRotate(root); } return root; } // A utility function to print preorder traversal of // the tree. The function also prints height of every // node void preOrder(Node node) { if (node != null) { Console.Write(node.key + " "); preOrder(node.left); preOrder(node.right); } } // Driver code public static void Main() { AVLTree tree = new AVLTree(); /* Constructing tree given in the above figure */ tree.root = tree.insert(tree.root, 9); tree.root = tree.insert(tree.root, 5); tree.root = tree.insert(tree.root, 10); tree.root = tree.insert(tree.root, 0); tree.root = tree.insert(tree.root, 6); tree.root = tree.insert(tree.root, 11); tree.root = tree.insert(tree.root, -1); tree.root = tree.insert(tree.root, 1); tree.root = tree.insert(tree.root, 2); /* The constructed AVL Tree would be 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 */ Console.WriteLine("Preorder traversal of "+ "constructed tree is : "); tree.preOrder(tree.root); tree.root = tree.deleteNode(tree.root, 10); /* The AVL Tree after deletion of 10 1 / \ 0 9 / / \ -1 5 11 / \ 2 6 */ Console.WriteLine(""); Console.WriteLine("Preorder traversal after "+ "deletion of 10 :"); tree.preOrder(tree.root); } } /* This code contributed by PrinciRaj1992 */
Javascript
<script> // JavaScript program for deletion in AVL Tree class Node { constructor(d) { this.left = null; this.right = null; this.key = d; this.height = 1; } } let root; // A utility function to get height of the tree function height(N) { if (N == null) return 0; return N.height; } // A utility function to get maximum of two integers function max(a, b) { return (a > b) ? a : b; } // A utility function to right rotate subtree rooted with y // See the diagram given above. function rightRotate(y) { let x = y.left; let T2 = x.right; // Perform rotation x.right = y; y.left = T2; // Update heights y.height = max(height(y.left), height(y.right)) + 1; x.height = max(height(x.left), height(x.right)) + 1; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. function leftRotate(x) { let y = x.right; let T2 = y.left; // Perform rotation y.left = x; x.right = T2; // Update heights x.height = max(height(x.left), height(x.right)) + 1; y.height = max(height(y.left), height(y.right)) + 1; // Return new root return y; } // Get Balance factor of node N function getBalance(N) { if (N == null) return 0; return height(N.left) - height(N.right); } function insert(node, key) { /* 1. Perform the normal BST rotation */ if (node == null) return (new Node(key)); if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); else // Equal keys not allowed return node; /* 2. Update height of this ancestor node */ node.height = 1 + max(height(node.left), height(node.right)); /* 3. Get the balance factor of this ancestor node to check whether this node became Wunbalanced */ let balance = getBalance(node); // If this node becomes unbalanced, then // there are 4 cases Left Left Case if (balance > 1 && key < node.left.key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node.right.key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node.left.key) { node.left = leftRotate(node.left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node.right.key) { node.right = rightRotate(node.right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } /* Given a non-empty binary search tree, return the node with minimum key value found in that tree. Note that the entire tree does not need to be searched. */ function minValueNode(node) { let current = node; /* loop down to find the leftmost leaf */ while (current.left != null) current = current.left; return current; } function deleteNode(root, key) { // STEP 1: PERFORM STANDARD BST DELETE if (root == null) return root; // If the key to be deleted is smaller than // the root's key, then it lies in left subtree if (key < root.key) root.left = deleteNode(root.left, key); // If the key to be deleted is greater than the // root's key, then it lies in right subtree else if (key > root.key) root.right = deleteNode(root.right, key); // if key is same as root's key, then this is the node // to be deleted else { // node with only one child or no child if ((root.left == null) || (root.right == null)) { let temp = null; if (temp == root.left) temp = root.right; else temp = root.left; // No child case if (temp == null) { temp = root; root = null; } else // One child case root = temp; // Copy the contents of // the non-empty child } else { // node with two children: Get the inorder // successor (smallest in the right subtree) let temp = minValueNode(root.right); // Copy the inorder successor's data to this node root.key = temp.key; // Delete the inorder successor root.right = deleteNode(root.right, temp.key); } } // If the tree had only one node then return if (root == null) return root; // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE root.height = max(height(root.left), height(root.right)) + 1; // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether // this node became unbalanced) let balance = getBalance(root); // If this node becomes unbalanced, then there are 4 cases // Left Left Case if (balance > 1 && getBalance(root.left) >= 0) return rightRotate(root); // Left Right Case if (balance > 1 && getBalance(root.left) < 0) { root.left = leftRotate(root.left); return rightRotate(root); } // Right Right Case if (balance < -1 && getBalance(root.right) <= 0) return leftRotate(root); // Right Left Case if (balance < -1 && getBalance(root.right) > 0) { root.right = rightRotate(root.right); return leftRotate(root); } return root; } // A utility function to print preorder traversal of // the tree. The function also prints height of every // node function preOrder(node) { if (node != null) { document.write(node.key + " "); preOrder(node.left); preOrder(node.right); } } /* Constructing tree given in the above figure */ root = insert(root, 9); root = insert(root, 5); root = insert(root, 10); root = insert(root, 0); root = insert(root, 6); root = insert(root, 11); root = insert(root, -1); root = insert(root, 1); root = insert(root, 2); /* The constructed AVL Tree would be 9 / \ 1 10 / \ \ 0 5 11 / / \ -1 2 6 */ document.write( "Preorder traversal of the constructed AVL tree is : " + "</br>"); preOrder(root); root = deleteNode(root, 10); /* The AVL Tree after deletion of 10 1 / \ 0 9 / / \ -1 5 11 / \ 2 6 */ document.write("</br>"); document.write("Preorder traversal after "+ "deletion of 10 :" + "</br>"); preOrder(root); </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA