Dada una array que está ordenada, pero después de ordenar algunos elementos se mueven a cualquiera de las posiciones adyacentes, es decir, arr[i] puede estar presente en arr[i+1] o arr[i-1]. Escriba una función eficiente para buscar un elemento en esta array. Básicamente, el elemento arr[i] solo se puede intercambiar con arr[i+1] o arr[i-1].
Por ejemplo, considere la array {2, 3, 10, 4, 40}, 4 se mueve a la siguiente posición y 10 se mueve a la posición anterior.
Ejemplo :
Input: arr[] = {10, 3, 40, 20, 50, 80, 70}, key = 40 Output: 2 Output is index of 40 in given array Input: arr[] = {10, 3, 40, 20, 50, 80, 70}, key = 90 Output: -1 -1 is returned to indicate element is not present
Una solución simple es buscar linealmente la clave dada en una array dada. La complejidad temporal de esta solución es O(n). Podemos modificar la búsqueda binaria para hacerlo en tiempo O(Logn).
La idea es comparar la clave con los 3 elementos del medio, si está presente, devolver el índice. Si no está presente, compare la clave con el elemento central para decidir si debe ir en la mitad izquierda o en la mitad derecha. Comparar con el elemento medio es suficiente ya que todos los elementos después de mid+2 deben ser mayores que el elemento mid y todos los elementos antes de mid-2 deben ser más pequeños que el elemento mid.
A continuación se muestra la implementación de este enfoque.
C++
// C++ program to find an element // in an almost sorted array #include <stdio.h> // A recursive binary search based function. // It returns index of x in given array // arr[l..r] is present, otherwise -1 int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r - l) / 2; // If the element is present at // one of the middle 3 positions if (arr[mid] == x) return mid; if (mid > l && arr[mid - 1] == x) return (mid - 1); if (mid < r && arr[mid + 1] == x) return (mid + 1); // If element is smaller than mid, then // it can only be present in left subarray if (arr[mid] > x) return binarySearch(arr, l, mid - 2, x); // Else the element can only be present // in right subarray return binarySearch(arr, mid + 2, r, x); } // We reach here when element is not present in array return -1; } // Driver Code int main(void) { int arr[] = {3, 2, 10, 4, 40}; int n = sizeof(arr) / sizeof(arr[0]); int x = 4; int result = binarySearch(arr, 0, n - 1, x); (result == -1) ? printf("Element is not present in array") : printf("Element is present at index %d", result); return 0; }
Java
// Java program to find an element // in an almost sorted array class GFG { // A recursive binary search based function. // It returns index of x in given array // arr[l..r] is present, otherwise -1 int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r - l) / 2; // If the element is present at // one of the middle 3 positions if (arr[mid] == x) return mid; if (mid > l && arr[mid - 1] == x) return (mid - 1); if (mid < r && arr[mid + 1] == x) return (mid + 1); // If element is smaller than mid, then // it can only be present in left subarray if (arr[mid] > x) return binarySearch(arr, l, mid - 2, x); // Else the element can only be present // in right subarray return binarySearch(arr, mid + 2, r, x); } // We reach here when element is // not present in array return -1; } // Driver code public static void main(String args[]) { GFG ob = new GFG(); int arr[] = {3, 2, 10, 4, 40}; int n = arr.length; int x = 4; int result = ob.binarySearch(arr, 0, n - 1, x); if(result == -1) System.out.println("Element is not present in array"); else System.out.println("Element is present at index " + result); } } // This code is contributed by Rajat Mishra
Python3
# Python 3 program to find an element # in an almost sorted array # A recursive binary search based function. # It returns index of x in given array arr[l..r] # is present, otherwise -1 def binarySearch(arr, l, r, x): if (r >= l): mid = int(l + (r - l) / 2) # If the element is present at one # of the middle 3 positions if (arr[mid] == x): return mid if (mid > l and arr[mid - 1] == x): return (mid - 1) if (mid < r and arr[mid + 1] == x): return (mid + 1) # If element is smaller than mid, then # it can only be present in left subarray if (arr[mid] > x): return binarySearch(arr, l, mid - 2, x) # Else the element can only # be present in right subarray return binarySearch(arr, mid + 2, r, x) # We reach here when element # is not present in array return -1 # Driver Code arr = [3, 2, 10, 4, 40] n = len(arr) x = 4 result = binarySearch(arr, 0, n - 1, x) if (result == -1): print("Element is not present in array") else: print("Element is present at index", result) # This code is contributed by Smitha Dinesh Semwal.
C#
// C# program to find an element // in an almost sorted array using System; class GFG { // A recursive binary search based function. // It returns index of x in given array // arr[l..r] is present, otherwise -1 int binarySearch(int []arr, int l, int r, int x) { if (r >= l) { int mid = l + (r - l) / 2; // If the element is present at // one of the middle 3 positions if (arr[mid] == x) return mid; if (mid > l && arr[mid - 1] == x) return (mid - 1); if (mid < r && arr[mid + 1] == x) return (mid + 1); // If element is smaller than mid, then // it can only be present in left subarray if (arr[mid] > x) return binarySearch(arr, l, mid - 2, x); // Else the element can only be present // in right subarray return binarySearch(arr, mid + 2, r, x); } // We reach here when element is // not present in array return -1; } // Driver code public static void Main() { GFG ob = new GFG(); int []arr = {3, 2, 10, 4, 40}; int n = arr.Length; int x = 4; int result = ob.binarySearch(arr, 0, n - 1, x); if(result == -1) Console.Write("Element is not present in array"); else Console.Write("Element is present at index " + result); } } // This code is contributed by nitin mittal.
PHP
<?php // PHP program to find an element // in an almost sorted array // A recursive binary search based function. // It returns index of x in given array // arr[l..r] is present, otherwise -1 function binarySearch($arr, $l, $r, $x) { if ($r >= $l) { $mid = $l + ($r - $l) / 2; // If the element is present at // one of the middle 3 positions if ($arr[$mid] == $x) return $mid; if ($mid > $l && $arr[$mid - 1] == $x) return ($mid - 1); if ($mid < $r && $arr[$mid + 1] == $x) return ($mid + 1); // If element is smaller than mid, then // it can only be present in left subarray if ($arr[$mid] > $x) return binarySearch($arr, $l, $mid - 2, $x); // Else the element can only be present // in right subarray return binarySearch($arr, $mid + 2, $r, $x); } // We reach here when element // is not present in array return -1; } // Driver Code $arr = array(3, 2, 10, 4, 40); $n = sizeof($arr); $x = 4; $result = binarySearch($arr, 0, $n - 1, $x); if($result == -1) echo("Element is not present in array"); else echo("Element is present at index $result"); //This code is contributed by nitin mittal ?>
Javascript
<script> // Javascript program to find an element // in an almost sorted array // A recursive binary search based function. // It returns index of x in given array // arr[l..r] is present, otherwise -1 function binarySearch(arr,l,r,x) { if (r >= l) { let mid = l + Math.floor((r - l) / 2); // If the element is present at // one of the middle 3 positions if (arr[mid] == x) return mid; if (mid > l && arr[mid - 1] == x) return (mid - 1); if (mid < r && arr[mid + 1] == x) return (mid + 1); // If element is smaller than mid, then // it can only be present in left subarray if (arr[mid] > x) return binarySearch(arr, l, mid - 2, x); // Else the element can only be present // in right subarray return binarySearch(arr, mid + 2, r, x); } // We reach here when element is // not present in array return -1; } // Driver code let arr=[3, 2, 10, 4, 40]; let n = arr.length; let x = 4; let result = binarySearch(arr, 0, n - 1, x); if(result == -1) document.write("Element is not present in array<br>"); else document.write("Element is present at index " + result+"<br>"); // This code is contributed by unknown2108 </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA