Buscar un elemento en N rangos dados

Dada una array de N rangos ordenados y un número K . La tarea es encontrar el índice del rango en el que se encuentra K. Si K no se encuentra en ninguno de los rangos dados, imprima -1
Nota: Ninguno de los rangos dados coincide. 
Ejemplos: 
 

Entrada: arr[] = { { 1, 3 }, { 4, 7 }, { 8, 11 } }, K = 6 
Salida:
6 se encuentra en el rango {4, 7} con índice = 1
Entrada: arr[ ] = { { 1, 3 }, { 4, 7 }, { 9, 11 } }, K = 8 
Salida: -1 
 

Enfoque ingenuo: se pueden seguir los siguientes pasos para resolver el problema anterior. 
 

  • Atraviesa todos los rangos.
  • Compruebe si la condición K >= arr[i].primero && K <= arr[i].segundo se cumple en alguna de las iteraciones.
  • Si el número K no se encuentra en ninguno de los rangos dados, imprima -1 .

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the index of the range
// in which K lies and uses linear search
int findNumber(pair<int, int> a[], int n, int K)
{
 
    // Iterate and find the element
    for (int i = 0; i < n; i++) {
 
        // If K lies in the current range
        if (K >= a[i].first && K <= a[i].second)
            return i;
    }
 
    // K doesn't lie in any of the given ranges
    return -1;
}
 
// Driver code
int main()
{
    pair<int, int> a[] = { { 1, 3 }, { 4, 7 }, { 8, 11 } };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 6;
    int index = findNumber(a, n, k);
    if (index != -1)
        cout << index;
    else
        cout << -1;
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to return the index
// of the range in which K lies
// and uses linear search
static int findNumber(pair a[],
                      int n, int K)
{
 
    // Iterate and find the element
    for (int i = 0; i < n; i++)
    {
 
        // If K lies in the current range
        if (K >= a[i].first &&
            K <= a[i].second)
            return i;
    }
 
    // K doesn't lie in any
    // of the given ranges
    return -1;
}
 
// Driver code
public static void main(String[] args)
{
    pair a[] = {new pair(1, 3 ),
                new pair(4, 7 ),
                new pair(8, 11 )};
    int n = a.length;
    int k = 6;
    int index = findNumber(a, n, k);
    if (index != -1)
        System.out.println(index);
    else
        System.out.println(-1);
}
}
 
// This code is contributed by Rajput-Ji

Python3

# Python 3 implementation of the approach
 
# Function to return the index of the range
# in which K lies and uses linear search
def findNumber(a, n, K):
     
    # Iterate and find the element
    for i in range(0, n, 1):
         
        # If K lies in the current range
        if (K >= a[i][0] and K <= a[i][1]):
            return i
 
    # K doesn't lie in any of the
    # given ranges
    return -1
 
# Driver code
if __name__ == '__main__':
    a = [[1, 3], [4, 7], [8, 11]]
    n = len(a)
    k = 6
    index = findNumber(a, n, k)
    if (index != -1):
        print(index, end = "")
    else:
        print(-1, end = "")
         
# This code is contributed by
# Surendra_Gangwar

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to return the index
// of the range in which K lies
// and uses linear search
static int findNumber(pair []a,
                    int n, int K)
{
 
    // Iterate and find the element
    for (int i = 0; i < n; i++)
    {
 
        // If K lies in the current range
        if (K >= a[i].first &&
            K <= a[i].second)
            return i;
    }
 
    // K doesn't lie in any
    // of the given ranges
    return -1;
}
 
// Driver code
public static void Main(String[] args)
{
    pair []a = {new pair(1, 3 ),
                new pair(4, 7 ),
                new pair(8, 11 )};
    int n = a.Length;
    int k = 6;
    int index = findNumber(a, n, k);
    if (index != -1)
        Console.WriteLine(index);
    else
        Console.WriteLine(-1);
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
 
// JavaScript implementation of the approach
 
// Function to return the index of the range
// in which K lies and uses linear search
function findNumber(a, n, K)
{
    // Iterate and find the element
    for (var i = 0; i < n; i++) {
 
        // If K lies in the current range
        if (K >= a[i][0] && K <= a[i][1])
            return i;
    }
 
    // K doesn't lie in any of the given ranges
    return -1;
}
 
// Driver code
var a = [ [ 1, 3 ], [ 4, 7 ], [ 8, 11 ] ];
var n = a.length;
var k = 6;
var index = findNumber(a, n, k);
if (index != -1)
    document.write( index);
else
    document.write( -1);
 
 
</script>
Producción: 

1

 

Complejidad de tiempo: O (N), ya que estamos usando un ciclo para atravesar N veces para verificar si el número se encuentra en el rango dado. Donde N es el número de pares en el arreglo.

Espacio auxiliar: O(1), ya que no estamos utilizando ningún espacio adicional.
Enfoque eficiente: la búsqueda binaria se puede utilizar para encontrar el elemento en O (log N). 
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the index of the range
// in which K lies and uses binary search
int findNumber(pair<int, int> a[], int n, int K)
{
 
    int low = 0, high = n - 1;
 
    // Binary search
    while (low <= high) {
 
        // Find the mid element
        int mid = (low + high) >> 1;
 
        // If element is found
        if (K >= a[mid].first && K <= a[mid].second)
            return mid;
 
        // Check in first half
        else if (K < a[mid].first)
            high = mid - 1;
 
        // Check in second half
        else
            low = mid + 1;
    }
 
    // Not found
    return -1;
}
 
// Driver code
int main()
{
    pair<int, int> a[] = { { 1, 3 }, { 4, 7 }, { 8, 11 } };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 6;
    int index = findNumber(a, n, k);
    if (index != -1)
        cout << index;
    else
        cout << -1;
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to return the index of the range
// in which K lies and uses binary search
static int findNumber(pair a[], int n, int K)
{
    int low = 0, high = n - 1;
 
    // Binary search
    while (low <= high)
    {
 
        // Find the mid element
        int mid = (low + high) >> 1;
 
        // If element is found
        if (K >= a[mid].first &&
            K <= a[mid].second)
            return mid;
 
        // Check in first half
        else if (K < a[mid].first)
            high = mid - 1;
 
        // Check in second half
        else
            low = mid + 1;
    }
 
    // Not found
    return -1;
}
 
// Driver code
public static void main(String[] args)
{
    pair a[] = { new pair(1, 3),
                 new pair(4, 7),
                 new pair(8, 11) };
    int n = a.length;
    int k = 6;
    int index = findNumber(a, n, k);
    if (index != -1)
        System.out.println(index);
    else
        System.out.println(-1);
    }
}
 
// This code is contributed by Princi Singh

Python3

# Python3 implementation of the approach
 
# Function to return the index of the range
# in which K lies and uses binary search
def findNumber(a, n, K):
 
    low = 0
    high = n - 1
 
    # Binary search
    while (low <= high):
 
        # Find the mid element
        mid = (low + high) >> 1
 
        # If element is found
        if (K >= a[mid][0] and K <= a[mid][1]):
            return mid
 
        # Check in first half
        elif (K < a[mid][0]):
            high = mid - 1
 
        # Check in second half
        else:
            low = mid + 1
 
    # Not found
    return -1
 
# Driver code
a= [ [ 1, 3 ], [ 4, 7 ], [ 8, 11 ] ]
n = len(a)
k = 6
index = findNumber(a, n, k)
if (index != -1):
    print(index)
else:
    print(-1)
 
# This code is contributed by mohit kumar

C#

// C# implementation of the above approach
using System;
class GFG
{
public class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to return the index of the range
// in which K lies and uses binary search
static int findNumber(pair []a, int n, int K)
{
    int low = 0, high = n - 1;
 
    // Binary search
    while (low <= high)
    {
 
        // Find the mid element
        int mid = (low + high) >> 1;
 
        // If element is found
        if (K >= a[mid].first &&
            K <= a[mid].second)
            return mid;
 
        // Check in first half
        else if (K < a[mid].first)
            high = mid - 1;
 
        // Check in second half
        else
            low = mid + 1;
    }
 
    // Not found
    return -1;
}
 
// Driver code
public static void Main(String[] args)
{
    pair []a = {new pair(1, 3),
                new pair(4, 7),
                new pair(8, 11)};
    int n = a.Length;
    int k = 6;
    int index = findNumber(a, n, k);
    if (index != -1)
        Console.WriteLine(index);
    else
        Console.WriteLine(-1);
    }
}
 
// This code is contributed by Rajput-Ji

Javascript

<script>
 
// JavaScript implementation of the approach
 
     class pair {
     
        constructor(first , second) {
            this.first = first;
            this.second = second;
        }
    }
 
    // Function to return the index of the range
    // in which K lies and uses binary search
    function findNumber( a , n , K) {
        var low = 0, high = n - 1;
 
        // Binary search
        while (low <= high) {
 
            // Find the mid element
            var mid = (low + high) >> 1;
 
            // If element is found
            if (K >= a[mid].first && K <= a[mid].second)
                return mid;
 
            // Check in first half
            else if (K < a[mid].first)
                high = mid - 1;
 
            // Check in second half
            else
                low = mid + 1;
        }
 
        // Not found
        return -1;
    }
 
    // Driver code
     
        var a = [ new pair(1, 3), new pair(4, 7),
                  new pair(8, 11) ];
        var n = a.length;
        var k = 6;
        var index = findNumber(a, n, k);
        if (index != -1)
            document.write(index);
        else
            document.write(-1);
 
// This code contributed by gauravrajput1
 
</script>
Producción: 

1

 

Complejidad de tiempo: O (log N), como estamos usando búsqueda binaria, en cada recorrido dividimos la array en dos mitades y elegimos una de ellas para buscar más adentro. Entonces, el tiempo efectivo es 1+1/2+1/4 +….+1/2^N que es equivalente a logN. Donde N es el número de pares en el arreglo.

Espacio auxiliar: O(1), ya que no estamos utilizando ningún espacio adicional.
 

Publicación traducida automáticamente

Artículo escrito por Striver y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *