Búsqueda de patrones | Conjunto 6 (Construcción eficiente de autómatas finitos)

En la publicación anterior , discutimos el algoritmo de búsqueda de patrones basado en Finite Automata. El método de construcción FA (Finite Automata) discutido en la publicación anterior toma O ((m ^ 3) * NO_OF_CHARS) tiempo. FA se puede construir en tiempo O(m*NO_OF_CHARS). En esta publicación, discutiremos el algoritmo O(m*NO_OF_CHARS) para la construcción de FA. La idea es similar a la construcción de arrays LP (sufijo de prefijo más largo) discutida en el algoritmo KMP . Usamos filas previamente llenas para llenar una nueva fila. 

Efficient Construction of Finite Automata

Pattern Searching

Los diagramas anteriores representan representaciones gráficas y tabulares del patrón ACACAGA.

Algoritmo: 
1) Rellene la primera fila. Todas las entradas de la primera fila son siempre 0 excepto la entrada del carácter pat[0]. Para el carácter pat[0], siempre necesitamos ir al estado 1. 
2) Inicialice lps como 0. lps para el primer índice siempre es 0. 
3) Haga lo siguiente para las filas en el índice i = 1 a M. (M es el longitud del patrón) 
…..a) Copie las entradas de la fila en el índice igual a lps. 
…..b) Actualice la entrada para el carácter pat[i] a i+1. 
…..c) Actualizar lps “lps = TF[lps][pat[i]]” donde TF es la array 2D que se está construyendo. 

A continuación se muestra la implementación del algoritmo anterior.

Implementación  

C++

#include <bits/stdc++.h>
using namespace std;
#define NO_OF_CHARS 256
  
/* This function builds the TF table 
which represents Finite Automata for a 
given pattern */
void computeTransFun(char* pat, int M, int TF[][NO_OF_CHARS])
{
    int i, lps = 0, x;
  
    // Fill entries in first row
    for (x = 0; x < NO_OF_CHARS; x++)
        TF[0][x] = 0;
    TF[0][pat[0]] = 1;
  
    // Fill entries in other rows
    for (i = 1; i <= M; i++) {
        // Copy values from row at index lps
        for (x = 0; x < NO_OF_CHARS; x++)
            TF[i][x] = TF[lps][x];
  
        // Update the entry corresponding to this character
        TF[i][pat[i]] = i + 1;
  
        // Update lps for next row to be filled
        if (i < M)
            lps = TF[lps][pat[i]];
    }
}
  
/* Prints all occurrences of pat in txt */
void search(char pat[], char txt[])
{
    int M = strlen(pat);
    int N = strlen(txt);
  
    int TF[M + 1][NO_OF_CHARS];
  
    computeTransFun(pat, M, TF);
  
    // process text over FA.
    int i, j = 0;
    for (i = 0; i < N; i++) {
        j = TF[j][txt[i]];
        if (j == M) {
            cout << "pattern found at index " << i - M + 1 << endl;
        }
    }
}
  
/* Driver code */
int main()
{
    char txt[] = "ACACACACAGAAGA ACACAGAACACAGA GEEKS";
    char pat[] = "ACACAGA";
    search(pat, txt);
    return 0;
}
  
// This is code is contributed by rathbhupendra

Java

/* A Java program to answer queries to check whether 
the substrings are palindrome or not efficiently */
  
class GFG
{
  
    static int NO_OF_CHARS = 256;
  
    /* This function builds the TF table 
    which represents Finite Automata for a 
    given pattern */
    static void computeTransFun(char[] pat, 
                                int M, int TF[][]) 
    {
        int i, lps = 0, x;
  
        // Fill entries in first row 
        for (x = 0; x < NO_OF_CHARS; x++) 
        {
            TF[0][x] = 0;
        }
        TF[0][pat[0]] = 1;
  
        // Fill entries in other rows 
        for (i = 1; i < M; i++) 
        {
            // Copy values from row at index lps 
            for (x = 0; x < NO_OF_CHARS; x++) 
            {
                TF[i][x] = TF[lps][x];
            }
  
            // Update the entry corresponding to this character 
            TF[i][pat[i]] = i + 1;
  
            // Update lps for next row to be filled 
            if (i < M) 
            {
                lps = TF[lps][pat[i]];
            }
        }
    }
  
    /* Prints all occurrences of pat in txt */
    static void search(char pat[], char txt[])
    {
        int M = pat.length;
        int N = txt.length;
  
        int[][] TF = new int[M + 1][NO_OF_CHARS];
  
        computeTransFun(pat, M, TF);
  
        // process text over FA. 
        int i, j = 0;
        for (i = 0; i < N; i++) 
        {
            j = TF[j][txt[i]];
            if (j == M) 
            {
                System.out.println("pattern found at index " + 
                                                (i - M + 1));
            }
        }
    }
  
    /* Driver code */
    public static void main(String[] args) 
    {
        char txt[] = "GEEKS FOR GEEKS".toCharArray();
        char pat[] = "GEEKS".toCharArray();
        search(pat, txt);
    }
}
  
// This code is contributed by Princi Singh

Python3

""" A Python3 program to answer queries to check whether  
the substrings are palindrome or not efficiently """
NO_OF_CHARS = 256
  
""" This function builds the TF table 
which represents Finite Automata for a 
given pattern """
  
  
def computeTransFun(pat, M, TF):
  
    lps = 0
  
    # Fill entries in first row
    for x in range(NO_OF_CHARS):
        TF[0][x] = 0
    TF[0][ord(pat[0])] = 1
  
    # Fill entries in other rows
    for i in range(1, M+1):
  
        # Copy values from row at index lps
        for x in range(NO_OF_CHARS):
            TF[i][x] = TF[lps][x]
  
        if (i < M):
            # Update the entry corresponding to this character
            TF[i][ord(pat[i])] = i + 1
  
            # Update lps for next row to be filled
  
            lps = TF[lps][ord(pat[i])]
  
# Prints all occurrences of pat in txt
  
  
def search(pat, txt):
    M = len(pat)
    N = len(txt)
    TF = [[0 for i in range(NO_OF_CHARS)] for j in range(M + 1)]
    computeTransFun(pat, M, TF)
  
    # process text over FA.
    j = 0
    for i in range(N):
        j = TF[j][ord(txt[i])]
        if (j == M):
            print("pattern found at index", i - M + 1)
  
  
# Driver code
txt = "ACACACACAGAAGA ACACAGAACACAGA GEEKS"
pat = "ACACAGA"
search(pat, txt)
  
# This code is contributed by divyeshrabadiya07

C#

/* A C# program to answer queries to check whether 
the substrings are palindrome or not efficiently */
using System;
      
class GFG
{
  
    static int NO_OF_CHARS = 256;
  
    /* This function builds the TF table 
    which represents Finite Automata for a 
    given pattern */
    static void computeTransFun(char[] pat, 
                                int M, int [,]TF) 
    {
        int i, lps = 0, x;
  
        // Fill entries in first row 
        for (x = 0; x < NO_OF_CHARS; x++) 
        {
            TF[0,x] = 0;
        }
        TF[0,pat[0]] = 1;
  
        // Fill entries in other rows 
        for (i = 1; i < M; i++) 
        {
            // Copy values from row at index lps 
            for (x = 0; x < NO_OF_CHARS; x++) 
            {
                TF[i,x] = TF[lps,x];
            }
  
            // Update the entry corresponding to this character 
            TF[i,pat[i]] = i + 1;
  
            // Update lps for next row to be filled 
            if (i < M) 
            {
                lps = TF[lps,pat[i]];
            }
        }
    }
  
    /* Prints all occurrences of pat in txt */
    static void search(char []pat, char []txt)
    {
        int M = pat.Length;
        int N = txt.Length;
  
        int[,] TF = new int[M + 1,NO_OF_CHARS];
  
        computeTransFun(pat, M, TF);
  
        // process text over FA. 
        int i, j = 0;
        for (i = 0; i < N; i++) 
        {
            j = TF[j,txt[i]];
            if (j == M) 
            {
                Console.WriteLine("pattern found at index " + 
                                                (i - M + 1));
            }
        }
    }
  
    /* Driver code */
    public static void Main(String[] args) 
    {
        char []txt = "GEEKS FOR GEEKS".ToCharArray();
        char []pat = "GEEKS".ToCharArray();
        search(pat, txt);
    }
}
  
// This code is contributed by Rajput-Ji

Javascript

<script>
/* A Javascript program to answer queries to check whether
the substrings are palindrome or not efficiently */
  
let NO_OF_CHARS = 256;
  
/* This function builds the TF table
    which represents Finite Automata for a
    given pattern */
function computeTransFun(pat,M,TF)
{
    let i, lps = 0, x;
   
        // Fill entries in first row
        for (x = 0; x < NO_OF_CHARS; x++)
        {
            TF[0][x] = 0;
        }
        TF[0][pat[0].charCodeAt(0)] = 1;
   
        // Fill entries in other rows
        for (i = 1; i < M; i++)
        {
            // Copy values from row at index lps
            for (x = 0; x < NO_OF_CHARS; x++)
            {
                TF[i][x] = TF[lps][x];
            }
   
            // Update the entry corresponding to this character
            TF[i][pat[i].charCodeAt(0)] = i + 1;
   
            // Update lps for next row to be filled
            if (i < M)
            {
                lps = TF[lps][pat[i].charCodeAt(0)];
            }
        }
}
  
/* Prints all occurrences of pat in txt */
function search(pat,txt)
{
    let M = pat.length;
        let N = txt.length;
   
        let TF = new Array(M + 1);
        for(let i=0;i<M+1;i++)
        {
            TF[i]=new Array(NO_OF_CHARS);
            for(let j=0;j<NO_OF_CHARS;j++)
            {
                TF[i][j]=0;
            }
        }
   
        computeTransFun(pat, M, TF);
   
        // process text over FA.
        let i, j = 0;
        for (i = 0; i < N; i++)
        {
            j = TF[j][txt[i].charCodeAt(0)];
            if (j == M)
            {
                document.write("pattern found at index " +
                                                (i - M + 1)+"<br>");
            }
        }
}
  
 /* Driver code */
let txt = "GEEKS FOR GEEKS".split("");
let pat = "GEEKS".split("");
search(pat, txt);
  
// This code is contributed by avanitrachhadiya2155
</script>

Producción:

 pattern found at index 0
 pattern found at index 10

La complejidad de tiempo para la construcción de FA es O(M*NO_OF_CHARS). El código de búsqueda es el mismo que el de la publicación anterior y la complejidad de tiempo es O(n).
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *