Dado un árbol binario y una clave para buscar en él, escriba un método iterativo que devuelva verdadero si la clave está presente en el árbol binario, de lo contrario, falso.
Por ejemplo, en el siguiente árbol, si la clave buscada es 3, entonces la función debería devolver verdadero y si la clave buscada es 12, entonces la función debería devolver falso.
C++
// Iterative level order traversal // based method to search in Binary Tree #include<bits/stdc++.h> using namespace std; /* A binary tree node has data, left child and right child */ class node { public: int data; node* left; node* right; /* Constructor that allocates a new node with the given data and NULL left and right pointers. */ node(int data){ this->data = data; this->left = NULL; this->right = NULL; } }; // An iterative process to search // an element x in a given binary tree bool iterativeSearch(node *root, int x) { // Base Case if (root == NULL) return false; // Create an empty queue for // level order traversal queue<node *> q; // Enqueue Root and initialize height q.push(root); // Queue based level order traversal while (q.empty() == false) { // See if current node is same as x node *node = q.front(); if (node->data == x) return true; // Remove current node and enqueue its children q.pop(); if (node->left != NULL) q.push(node->left); if (node->right != NULL) q.push(node->right); } return false; } // Driver code int main() { node* NewRoot=NULL; node *root = new node(2); root->left = new node(7); root->right = new node(5); root->left->right = new node(6); root->left->right->left=new node(1); root->left->right->right=new node(11); root->right->right=new node(9); root->right->right->left=new node(4); iterativeSearch(root, 6)? cout << "Found\n": cout << "Not Found\n"; iterativeSearch(root, 12)? cout << "Found\n": cout << "Not Found\n"; return 0; } // This code is contributed by rathbhupendra
C
// Iterative level order traversal based method to search in Binary Tree #include <iostream> #include <queue> using namespace std; /* A binary tree node has data, left child and right child */ struct node { int data; struct node* left, *right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers.*/ struct node* newNode(int data) { struct node* node = new struct node; node->data = data; node->left = node->right = NULL; return(node); } // An iterative process to search an element x in a given binary tree bool iterativeSearch(node *root, int x) { // Base Case if (root == NULL) return false; // Create an empty queue for level order traversal queue<node *> q; // Enqueue Root and initialize height q.push(root); // Queue based level order traversal while (q.empty() == false) { // See if current node is same as x node *node = q.front(); if (node->data == x) return true; // Remove current node and enqueue its children q.pop(); if (node->left != NULL) q.push(node->left); if (node->right != NULL) q.push(node->right); } return false; } // Driver program int main(void) { struct node*NewRoot=NULL; struct node *root = newNode(2); root->left = newNode(7); root->right = newNode(5); root->left->right = newNode(6); root->left->right->left=newNode(1); root->left->right->right=newNode(11); root->right->right=newNode(9); root->right->right->left=newNode(4); iterativeSearch(root, 6)? cout << "Found\n": cout << "Not Found\n"; iterativeSearch(root, 12)? cout << "Found\n": cout << "Not Found\n"; return 0; }
Java
// Iterative level order traversal // based method to search in Binary Tree import java.util.*; class GFG { /* A binary tree node has data, left child and right child */ static class node { int data; node left; node right; /* Constructor that allocates a new node with the given data and null left and right pointers. */ node(int data) { this.data = data; this.left = null; this.right = null; } }; // An iterative process to search // an element x in a given binary tree static boolean iterativeSearch(node root, int x) { // Base Case if (root == null) return false; // Create an empty queue for // level order traversal Queue<node > q = new LinkedList(); // Enqueue Root and initialize height q.add(root); // Queue based level order traversal while (q.size() > 0) { // See if current node is same as x node node = q.peek(); if (node.data == x) return true; // Remove current node and enqueue its children q.remove(); if (node.left != null) q.add(node.left); if (node.right != null) q.add(node.right); } return false; } // Driver code public static void main(String ags[]) { node NewRoot = null; node root = new node(2); root.left = new node(7); root.right = new node(5); root.left.right = new node(6); root.left.right.left = new node(1); root.left.right.right = new node(11); root.right.right = new node(9); root.right.right.left = new node(4); System.out.print((iterativeSearch(root, 6)? "Found\n": "Not Found\n")); System.out.print((iterativeSearch(root, 12)? "Found\n": "Not Found\n")); } } // This code is contributed by Arnab Kundu
Python3
# Iterative level order traversal based # method to search in Binary Tree # importing Queue from queue import Queue # Helper function that allocates a # new node with the given data and # None left and right pointers. class newNode: def __init__(self, data): self.data = data self.left = self.right = None # An iterative process to search an # element x in a given binary tree def iterativeSearch(root, x): # Base Case if (root == None): return False # Create an empty queue for level # order traversal q = Queue() # Enqueue Root and initialize height q.put(root) # Queue based level order traversal while (q.empty() == False): # See if current node is same as x node = q.queue[0] if (node.data == x): return True # Remove current node and # enqueue its children q.get() if (node.left != None): q.put(node.left) if (node.right != None): q.put(node.right) return False # Driver Code if __name__ == '__main__': root = newNode(2) root.left = newNode(7) root.right = newNode(5) root.left.right = newNode(6) root.left.right.left = newNode(1) root.left.right.right = newNode(11) root.right.right = newNode(9) root.right.right.left = newNode(4) if iterativeSearch(root, 6): print("Found") else: print("Not Found") if iterativeSearch(root, 12): print("Found") else: print("Not Found") # This code is contributed by PranchalK
C#
// Iterative level order traversal // based method to search in Binary Tree using System; using System.Collections.Generic; class GFG { /* A binary tree node has data, left child and right child */ public class node { public int data; public node left; public node right; /* Constructor that allocates a new node with the given data and null left and right pointers. */ public node(int data) { this.data = data; this.left = null; this.right = null; } }; // An iterative process to search // an element x in a given binary tree static Boolean iterativeSearch(node root, int x) { // Base Case if (root == null) return false; // Create an empty queue for // level order traversal Queue<node > q = new Queue<node>(); // Enqueue Root and initialize height q.Enqueue(root); // Queue based level order traversal while (q.Count > 0) { // See if current node is same as x node node = q.Peek(); if (node.data == x) return true; // Remove current node and // enqueue its children q.Dequeue(); if (node.left != null) q.Enqueue(node.left); if (node.right != null) q.Enqueue(node.right); } return false; } // Driver code public static void Main(String []ags) { node root = new node(2); root.left = new node(7); root.right = new node(5); root.left.right = new node(6); root.left.right.left = new node(1); root.left.right.right = new node(11); root.right.right = new node(9); root.right.right.left = new node(4); Console.WriteLine((iterativeSearch(root, 6) ? "Found\n" : "Not Found")); Console.Write((iterativeSearch(root, 12) ? "Found\n" : "Not Found\n")); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Iterative level order traversal // based method to search in Binary Tree /* A binary tree node has data, left child and right child */ class node { constructor(data) { this.data = data; this.left = null; this.right = null; } } // An iterative process to search // an element x in a given binary tree function iterativeSearch(root,x) { // Base Case if (root == null) return false; // Create an empty queue for // level order traversal let q = []; // Enqueue Root and initialize height q.push(root); // Queue based level order traversal while (q.length > 0) { // See if current node is same as x let node = q[0]; if (node.data == x) return true; // Remove current node and enqueue its children q.shift(); if (node.left != null) q.push(node.left); if (node.right != null) q.push(node.right); } return false; } // Driver code let NewRoot = null; let root = new node(2); root.left = new node(7); root.right = new node(5); root.left.right = new node(6); root.left.right.left = new node(1); root.left.right.right = new node(11); root.right.right = new node(9); root.right.right.left = new node(4); document.write((iterativeSearch(root, 6)? "Found<br>": "Not Found<br>")); document.write((iterativeSearch(root, 12)? "Found<br>": "Not Found<br>")); // This code is contributed by rag2127 </script>
C++
// An iterative method to search an item in Binary Tree #include <iostream> #include <stack> using namespace std; /* A binary tree node has data, left child and right child */ struct node { int data; struct node* left, *right; }; /* Helper function that allocates a new node with the given data and NULL left and right pointers.*/ struct node* newNode(int data) { struct node* node = new struct node; node->data = data; node->left = node->right = NULL; return(node); } // iterative process to search an element x in a given binary tree bool iterativeSearch(node *root, int x) { // Base Case if (root == NULL) return false; // Create an empty stack and push root to it stack<node *> nodeStack; nodeStack.push(root); // Do iterative preorder traversal to search x while (nodeStack.empty() == false) { // See the top item from stack and check if it is same as x struct node *node = nodeStack.top(); if (node->data == x) return true; nodeStack.pop(); // Push right and left children of the popped node to stack if (node->right) nodeStack.push(node->right); if (node->left) nodeStack.push(node->left); } return false; } // Driver program int main(void) { struct node*NewRoot=NULL; struct node *root = newNode(2); root->left = newNode(7); root->right = newNode(5); root->left->right = newNode(6); root->left->right->left=newNode(1); root->left->right->right=newNode(11); root->right->right=newNode(9); root->right->right->left=newNode(4); iterativeSearch(root, 6)? cout << "Found\n": cout << "Not Found\n"; iterativeSearch(root, 12)? cout << "Found\n": cout << "Not Found\n"; return 0; }
Java
// An iterative method to search an item in Binary Tree import java.util.*; class GFG { /* A binary tree node has data, left child and right child */ static class node { int data; node left, right; }; /* Helper function that allocates a new node with the given data and null left and right pointers.*/ static node newNode(int data) { node node = new node(); node.data = data; node.left = node.right = null; return(node); } // iterative process to search // an element x in a given binary tree static boolean iterativeSearch(node root, int x) { // Base Case if (root == null) return false; // Create an empty stack and push root to it Stack<node> nodeStack = new Stack<node>(); nodeStack.push(root); // Do iterative preorder traversal to search x while (nodeStack.empty() == false) { // See the top item from stack and // check if it is same as x node node = nodeStack.peek(); if (node.data == x) return true; nodeStack.pop(); // Push right and left children // of the popped node to stack if (node.right != null) nodeStack.push(node.right); if (node.left != null) nodeStack.push(node.left); } return false; } // Driver Code public static void main(String[] args) { node NewRoot = null; node root = newNode(2); root.left = newNode(7); root.right = newNode(5); root.left.right = newNode(6); root.left.right.left = newNode(1); root.left.right.right = newNode(11); root.right.right = newNode(9); root.right.right.left = newNode(4); if(iterativeSearch(root, 6)) System.out.println("Found"); else System.out.println("Not Found"); if(iterativeSearch(root, 12)) System.out.println("Found"); else System.out.println("Not Found"); } } // This code is contributed by 29AjayKumar
Python3
# An iterative Python3 code to search # an item in Binary Tree ''' A binary tree node has data, left child and right child ''' class newNode: # Construct to create a newNode def __init__(self, key): self.data = key self.left = None self.right = None # iterative process to search an element x # in a given binary tree def iterativeSearch(root,x): # Base Case if (root == None): return False # Create an empty stack and # append root to it nodeStack = [] nodeStack.append(root) # Do iterative preorder traversal to search x while (len(nodeStack)): # See the top item from stack and # check if it is same as x node = nodeStack[0] if (node.data == x): return True nodeStack.pop(0) # append right and left children # of the popped node to stack if (node.right): nodeStack.append(node.right) if (node.left): nodeStack.append(node.left) return False # Driver Code root = newNode(2) root.left = newNode(7) root.right = newNode(5) root.left.right = newNode(6) root.left.right.left = newNode(1) root.left.right.right = newNode(11) root.right.right = newNode(9) root.right.right.left = newNode(4) if iterativeSearch(root, 6): print("Found") else: print("Not Found") if iterativeSearch(root, 12): print("Found") else: print("Not Found") # This code is contributed by SHUBHAMSINGH10
C#
// An iterative method to search an item in Binary Tree using System; using System.Collections.Generic; class GFG { /* A binary tree node has data, left child and right child */ class node { public int data; public node left, right; }; /* Helper function that allocates a new node with the given data and null left and right pointers.*/ static node newNode(int data) { node node = new node(); node.data = data; node.left = node.right = null; return(node); } // iterative process to search // an element x in a given binary tree static bool iterativeSearch(node root, int x) { // Base Case if (root == null) return false; // Create an empty stack and.Push root to it Stack<node> nodeStack = new Stack<node>(); nodeStack.Push(root); // Do iterative preorder traversal to search x while (nodeStack.Count != 0) { // See the top item from stack and // check if it is same as x node node = nodeStack.Peek(); if (node.data == x) return true; nodeStack.Pop(); // Push right and left children // of the.Popped node to stack if (node.right != null) nodeStack.Push(node.right); if (node.left != null) nodeStack.Push(node.left); } return false; } // Driver Code public static void Main(String[] args) { node root = newNode(2); root.left = newNode(7); root.right = newNode(5); root.left.right = newNode(6); root.left.right.left = newNode(1); root.left.right.right = newNode(11); root.right.right = newNode(9); root.right.right.left = newNode(4); if(iterativeSearch(root, 6)) Console.WriteLine("Found"); else Console.WriteLine("Not Found"); if(iterativeSearch(root, 12)) Console.WriteLine("Found"); else Console.WriteLine("Not Found"); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // An iterative method to search an item in Binary Tree /* A binary tree node has data, left child and right child */ class Node { constructor() { this.data = 0; this.left = null; this.right = null; } }; /* Helper function that allocates a new node with the given data and null left and right pointers.*/ function newNode(data) { var node = new Node(); node.data = data; node.left = node.right = null; return(node); } // iterative process to search // an element x in a given binary tree function iterativeSearch(root, x) { // Base Case if (root == null) return false; // Create an empty stack and.push root to it var nodeStack = []; nodeStack.push(root); // Do iterative preorder traversal to search x while (nodeStack.length != 0) { // See the top item from stack and // check if it is same as x var node = nodeStack[nodeStack.length - 1]; if (node.data == x) return true; nodeStack.pop(); // push right and left children // of the.Popped node to stack if (node.right != null) nodeStack.push(node.right); if (node.left != null) nodeStack.push(node.left); } return false; } // Driver Code var root = newNode(2); root.left = newNode(7); root.right = newNode(5); root.left.right = newNode(6); root.left.right.left = newNode(1); root.left.right.right = newNode(11); root.right.right = newNode(9); root.right.right.left = newNode(4); if(iterativeSearch(root, 6)) document.write("Found<br>"); else document.write("Not Found<br>"); if(iterativeSearch(root, 12)) document.write("Found<br>"); else document.write("Not Found<br>"); </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA