Este artículo trata sobre la superficie y el concepto matemático de un toro.
Una forma 3D hecha al girar un círculo pequeño (radio r) a lo largo de una línea hecha por un círculo más grande (radio R).
Propiedad:
- Se puede hacer girando un círculo pequeño (radio r) a lo largo de una línea formada por un círculo más grande (radio R).
- no es un poliedro
- No tiene vértices ni aristas.
- Área
de superficie El área de superficie de un toro viene dada por la fórmula:
Surface Area = 4 × Pi^2 × R × r
- Donde r es el radio del círculo pequeño y R es el radio del círculo más grande y Pi es la constante Pi=3.14159.
- Volumen
El volumen de un cono viene dado por la fórmula:
Volume = 2 × Pi^2 × R × r^2
- Donde r es el radio del círculo pequeño y R es el radio del círculo más grande y Pi es la constante Pi=3.14159.
Ejemplos:
Input : r=3, R=7 Output : Volume: 1243.568195 Surface: 829.045464
C++
// C++ program to calculate volume // and surface area of Torus #include<bits/stdc++.h> using namespace std; int main() { // radius of inner circle double r = 3; // distance from origin to center of inner circle // radius of black circle in figure double R = 7; // Value of Pi float pi = (float)3.14159; double Volume = 0; Volume = 2 * pi * pi * R * r * r; cout<<"Volume: "<<Volume<<endl; double Surface = 4 * pi * pi * R * r; cout<<"Surface: "<<Surface<<endl; }
C
// C program to calculate volume // and surface area of Torus #include <stdio.h> int main() { // radius of inner circle double r = 3; // distance from origin to center of inner circle // radius of black circle in figure double R = 7; // Value of Pi float pi = (float)3.14159; double Volume = 0; Volume = 2 * pi * pi * R * r * r; printf("Volume: %f", Volume); double Surface = 4 * pi * pi * R * r; printf("\nSurface: %f", Surface); }
Java
// Java program to calculate volume // and surface area of Torus class Test { public static void main(String args[]) { // radius of inner circle double r = 3; // distance from origin to center of inner circle // radius of black circle in figure double R = 7; // Value of Pi float pi = (float)3.14159; double Volume = 0; Volume = 2 * pi * pi * R * r * r; System.out.printf("Volume: %f", Volume); double Surface = 4 * pi * pi * R * r; System.out.printf("\nSurface: %f", Surface); } }
Python3
# Python3 program to calculate volume # and surface area of Torus # radius of inner circle r = 3 # distance from origin to center of inner circle # radius of black circle in figure R = 7 # Value of Pi pi = 3.14159 Volume = (float)(2 * pi * pi * R * r * r); print("Volume: ", Volume); Surface = (float)(4 * pi * pi * R * r); print("Surface: ", Surface);
C#
// C# program to calculate volume // and surface area of Torus using System; class GFG { // Driver Code public static void Main() { // radius of inner circle double r = 3; // distance from origin to center // of inner circle radius of black // circle in figure double R = 7; // Value of Pi float pi = (float)3.14159; double Volume = 0; Volume = 2 * pi * pi * R * r * r; Console.WriteLine("Volume: {0}", Volume); double Surface = 4 * pi * pi * R * r; Console.WriteLine("Surface: {0}", Surface); } } // This code is contributed by Soumik
PHP
<?php // PHP program to calculate volume // and surface area of Torus // radius of inner circle $r = 3; // distance from origin to center // of inner circle radius of black // circle in figure $R = 7; // Value of Pi $pi = (float)3.14159; $Volume = 0; $Volume = 2 * $pi * $pi * $R * $r * $r; echo "Volume: ", $Volume, "\n"; $Surface = 4 * $pi * $pi * $R * $r; echo "Surface: ", $Surface, "\n"; // This code is contributed by ajit ?>
Javascript
<script> // Javascript program to calculate volume // and surface area of Torus // radius of inner circle var r = 3; // distance from origin to center of inner circle // radius of black circle in figure var R = 7; // Value of Pi var pi = 3.14159; var Volume = 0; Volume = 2 * pi * pi * R * r * r; document.write("Volume: " + Volume + "<br>"); var Surface = 4 * pi * pi * R * r; document.write("Surface: " + Surface); </script>
Producción:
Volume: 1243.568195 Surface: 829.045464
Complejidad temporal : O(1)
Espacio auxiliar : O(1)