Calcule la media, la desviación estándar y la varianza de una array NumPy dada

 En NumPy, podemos calcular la media, la desviación estándar y la varianza de una array determinada a lo largo del segundo eje mediante dos enfoques, primero mediante el uso de funciones incorporadas y segundo mediante las fórmulas de la media, la desviación estándar y la varianza.

Método 1: Usar numpy.mean() , numpy.std() , numpy.var()

Python

import numpy as np
  
  
# Original array
array = np.arange(10)
print(array)
  
r1 = np.mean(array)
print("\nMean: ", r1)
  
r2 = np.std(array)
print("\nstd: ", r2)
  
r3 = np.var(array)
print("\nvariance: ", r3)

Producción:

[0 1 2 3 4 5 6 7 8 9]

Mean:  4.5

std:  2.8722813232690143

variance:  8.25

Método 2: Usando las fórmulas 

Python3

import numpy as np
  
# Original array
array = np.arange(10)
print(array)
  
r1 = np.average(array)
print("\nMean: ", r1)
  
r2 = np.sqrt(np.mean((array - np.mean(array)) ** 2))
print("\nstd: ", r2)
  
r3 = np.mean((array - np.mean(array)) ** 2)
print("\nvariance: ", r3)

Producción:

[0 1 2 3 4 5 6 7 8 9]

Mean:  4.5

std:  2.8722813232690143

variance:  8.25

Ejemplo: comparación de métodos y fórmulas incorporados

Python

import numpy as np
  
# Original array
x = np.arange(5)
print(x)
  
r11 = np.mean(x)
r12 = np.average(x)
print("\nMean: ", r11, r12)
  
r21 = np.std(x)
r22 = np.sqrt(np.mean((x - np.mean(x)) ** 2))
print("\nstd: ", r21, r22)
  
r31 = np.var(x)
r32 = np.mean((x - np.mean(x)) ** 2)
print("\nvariance: ", r31, r32)

Producción:

[0 1 2 3 4]

Mean:  2.0 2.0

std:  1.4142135623730951 1.4142135623730951

variance:  2.0 2.0

Publicación traducida automáticamente

Artículo escrito por avengerjanus123 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *