Eulerian Path es un camino en el gráfico que visita cada borde exactamente una vez. El Circuito Euleriano es un Camino Euleriano que comienza y termina en el mismo vértice.
Se dice que un grafo es euleriano si tiene un ciclo euleriano. Hemos discutido el circuito euleriano para un gráfico no dirigido . En esta publicación, se discute lo mismo para un gráfico dirigido.
Por ejemplo, el siguiente gráfico tiene un ciclo euleriano como {1, 0, 3, 4, 0, 2, 1}
¿Cómo verificar si un gráfico dirigido es euleriano?
Un gráfico dirigido tiene un ciclo euleriano si las siguientes condiciones son verdaderas
- Todos los vértices con grado distinto de cero pertenecen a un solo componente fuertemente conectado .
- El grado de entrada es igual al grado de salida para cada vértice.
Podemos detectar componentes conectados individualmente utilizando el algoritmo simple basado en DFS de Kosaraju .
Para comparar en grado y fuera de grado, necesitamos almacenar en grado y fuera de grado de cada vértice. Nuestro grado se puede obtener por el tamaño de una lista de adyacencia. En grado se puede almacenar creando una array de tamaño igual al número de vértices.
Siguiendo las implementaciones del enfoque anterior.
C++
// A C++ program to check if a given directed graph is Eulerian or not #include<iostream> #include <list> #define CHARS 26 using namespace std; // A class that represents an undirected graph class Graph { int V; // No. of vertices list<int> *adj; // A dynamic array of adjacency lists int *in; public: // Constructor and destructor Graph(int V); ~Graph() { delete [] adj; delete [] in; } // function to add an edge to graph void addEdge(int v, int w) { adj[v].push_back(w); (in[w])++; } // Method to check if this graph is Eulerian or not bool isEulerianCycle(); // Method to check if all non-zero degree vertices are connected bool isSC(); // Function to do DFS starting from v. Used in isConnected(); void DFSUtil(int v, bool visited[]); Graph getTranspose(); }; Graph::Graph(int V) { this->V = V; adj = new list<int>[V]; in = new int[V]; for (int i = 0; i < V; i++) in[i] = 0; } /* This function returns true if the directed graph has a eulerian cycle, otherwise returns false */ bool Graph::isEulerianCycle() { // Check if all non-zero degree vertices are connected if (isSC() == false) return false; // Check if in degree and out degree of every vertex is same for (int i = 0; i < V; i++) if (adj[i].size() != in[i]) return false; return true; } // A recursive function to do DFS starting from v void Graph::DFSUtil(int v, bool visited[]) { // Mark the current node as visited and print it visited[v] = true; // Recur for all the vertices adjacent to this vertex list<int>::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) DFSUtil(*i, visited); } // Function that returns reverse (or transpose) of this graph // This function is needed in isSC() Graph Graph::getTranspose() { Graph g(V); for (int v = 0; v < V; v++) { // Recur for all the vertices adjacent to this vertex list<int>::iterator i; for(i = adj[v].begin(); i != adj[v].end(); ++i) { g.adj[*i].push_back(v); (g.in[v])++; } } return g; } // This function returns true if all non-zero degree vertices of // graph are strongly connected (Please refer // https://www.geeksforgeeks.org/connectivity-in-a-directed-graph/ ) bool Graph::isSC() { // Mark all the vertices as not visited (For first DFS) bool visited[V]; for (int i = 0; i < V; i++) visited[i] = false; // Find the first vertex with non-zero degree int n; for (n = 0; n < V; n++) if (adj[n].size() > 0) break; // Do DFS traversal starting from first non zero degrees vertex. DFSUtil(n, visited); // If DFS traversal doesn't visit all vertices, then return false. for (int i = 0; i < V; i++) if (adj[i].size() > 0 && visited[i] == false) return false; // Create a reversed graph Graph gr = getTranspose(); // Mark all the vertices as not visited (For second DFS) for (int i = 0; i < V; i++) visited[i] = false; // Do DFS for reversed graph starting from first vertex. // Starting Vertex must be same starting point of first DFS gr.DFSUtil(n, visited); // If all vertices are not visited in second DFS, then // return false for (int i = 0; i < V; i++) if (adj[i].size() > 0 && visited[i] == false) return false; return true; } // Driver program to test above functions int main() { // Create a graph given in the above diagram Graph g(5); g.addEdge(1, 0); g.addEdge(0, 2); g.addEdge(2, 1); g.addEdge(0, 3); g.addEdge(3, 4); g.addEdge(4, 0); if (g.isEulerianCycle()) cout << "Given directed graph is eulerian n"; else cout << "Given directed graph is NOT eulerian n"; return 0; }
Java
// A Java program to check if a given directed graph is Eulerian or not // A class that represents an undirected graph import java.io.*; import java.util.*; import java.util.LinkedList; // This class represents a directed graph using adjacency list class Graph { private int V; // No. of vertices private LinkedList<Integer> adj[];//Adjacency List private int in[]; //maintaining in degree //Constructor Graph(int v) { V = v; adj = new LinkedList[v]; in = new int[V]; for (int i=0; i<v; ++i) { adj[i] = new LinkedList(); in[i] = 0; } } //Function to add an edge into the graph void addEdge(int v,int w) { adj[v].add(w); in[w]++; } // A recursive function to print DFS starting from v void DFSUtil(int v,Boolean visited[]) { // Mark the current node as visited visited[v] = true; int n; // Recur for all the vertices adjacent to this vertex Iterator<Integer> i =adj[v].iterator(); while (i.hasNext()) { n = i.next(); if (!visited[n]) DFSUtil(n,visited); } } // Function that returns reverse (or transpose) of this graph Graph getTranspose() { Graph g = new Graph(V); for (int v = 0; v < V; v++) { // Recur for all the vertices adjacent to this vertex Iterator<Integer> i = adj[v].listIterator(); while (i.hasNext()) { g.adj[i.next()].add(v); (g.in[v])++; } } return g; } // The main function that returns true if graph is strongly // connected Boolean isSC() { // Step 1: Mark all the vertices as not visited (For // first DFS) Boolean visited[] = new Boolean[V]; for (int i = 0; i < V; i++) visited[i] = false; // Step 2: Do DFS traversal starting from the first vertex. DFSUtil(0, visited); // If DFS traversal doesn't visit all vertices, then return false. for (int i = 0; i < V; i++) if (visited[i] == false) return false; // Step 3: Create a reversed graph Graph gr = getTranspose(); // Step 4: Mark all the vertices as not visited (For second DFS) for (int i = 0; i < V; i++) visited[i] = false; // Step 5: Do DFS for reversed graph starting from first vertex. // Starting Vertex must be same starting point of first DFS gr.DFSUtil(0, visited); // If all vertices are not visited in second DFS, then // return false for (int i = 0; i < V; i++) if (visited[i] == false) return false; return true; } /* This function returns true if the directed graph has a eulerian cycle, otherwise returns false */ Boolean isEulerianCycle() { // Check if all non-zero degree vertices are connected if (isSC() == false) return false; // Check if in degree and out degree of every vertex is same for (int i = 0; i < V; i++) if (adj[i].size() != in[i]) return false; return true; } public static void main (String[] args) throws java.lang.Exception { Graph g = new Graph(5); g.addEdge(1, 0); g.addEdge(0, 2); g.addEdge(2, 1); g.addEdge(0, 3); g.addEdge(3, 4); g.addEdge(4, 0); if (g.isEulerianCycle()) System.out.println("Given directed graph is eulerian "); else System.out.println("Given directed graph is NOT eulerian "); } } //This code is contributed by Aakash Hasija
Python3
# A Python3 program to check if a given # directed graph is Eulerian or not from collections import defaultdict class Graph(): def __init__(self, vertices): self.V = vertices self.graph = defaultdict(list) self.IN = [0] * vertices def addEdge(self, v, u): self.graph[v].append(u) self.IN[u] += 1 def DFSUtil(self, v, visited): visited[v] = True for node in self.graph[v]: if visited[node] == False: self.DFSUtil(node, visited) def getTranspose(self): gr = Graph(self.V) for node in range(self.V): for child in self.graph[node]: gr.addEdge(child, node) return gr def isSC(self): visited = [False] * self.V v = 0 for v in range(self.V): if len(self.graph[v]) > 0: break self.DFSUtil(v, visited) # If DFS traversal doesn't visit all # vertices, then return false. for i in range(self.V): if visited[i] == False: return False gr = self.getTranspose() visited = [False] * self.V gr.DFSUtil(v, visited) for i in range(self.V): if visited[i] == False: return False return True def isEulerianCycle(self): # Check if all non-zero degree vertices # are connected if self.isSC() == False: return False # Check if in degree and out degree of # every vertex is same for v in range(self.V): if len(self.graph[v]) != self.IN[v]: return False return True g = Graph(5); g.addEdge(1, 0); g.addEdge(0, 2); g.addEdge(2, 1); g.addEdge(0, 3); g.addEdge(3, 4); g.addEdge(4, 0); if g.isEulerianCycle(): print( "Given directed graph is eulerian"); else: print( "Given directed graph is NOT eulerian"); # This code is contributed by Divyanshu Mehta
C#
// A C# program to check if a given // directed graph is Eulerian or not // A class that represents an // undirected graph using System; using System.Collections.Generic; // This class represents a directed // graph using adjacency list class Graph{ // No. of vertices public int V; // Adjacency List public List<int> []adj; // Maintaining in degree public int []init; // Constructor Graph(int v) { V = v; adj = new List<int>[v]; init = new int[V]; for(int i = 0; i < v; ++i) { adj[i] = new List<int>(); init[i] = 0; } } // Function to add an edge into the graph void addEdge(int v, int w) { adj[v].Add(w); init[w]++; } // A recursive function to print DFS // starting from v void DFSUtil(int v, Boolean []visited) { // Mark the current node as visited visited[v] = true; // Recur for all the vertices // adjacent to this vertex foreach(int i in adj[v]) { if (!visited[i]) DFSUtil(i, visited); } } // Function that returns reverse // (or transpose) of this graph Graph getTranspose() { Graph g = new Graph(V); for(int v = 0; v < V; v++) { // Recur for all the vertices // adjacent to this vertex foreach(int i in adj[v]) { g.adj[i].Add(v); (g.init[v])++; } } return g; } // The main function that returns // true if graph is strongly connected Boolean isSC() { // Step 1: Mark all the vertices // as not visited (For first DFS) Boolean []visited = new Boolean[V]; for(int i = 0; i < V; i++) visited[i] = false; // Step 2: Do DFS traversal starting // from the first vertex. DFSUtil(0, visited); // If DFS traversal doesn't visit // all vertices, then return false. for(int i = 0; i < V; i++) if (visited[i] == false) return false; // Step 3: Create a reversed graph Graph gr = getTranspose(); // Step 4: Mark all the vertices as // not visited (For second DFS) for(int i = 0; i < V; i++) visited[i] = false; // Step 5: Do DFS for reversed graph // starting from first vertex. // Staring Vertex must be same // starting point of first DFS gr.DFSUtil(0, visited); // If all vertices are not visited // in second DFS, then return false for(int i = 0; i < V; i++) if (visited[i] == false) return false; return true; } // This function returns true if the // directed graph has a eulerian // cycle, otherwise returns false Boolean isEulerianCycle() { // Check if all non-zero degree // vertices are connected if (isSC() == false) return false; // Check if in degree and out // degree of every vertex is same for(int i = 0; i < V; i++) if (adj[i].Count != init[i]) return false; return true; } // Driver code public static void Main(String[] args) { Graph g = new Graph(5); g.addEdge(1, 0); g.addEdge(0, 2); g.addEdge(2, 1); g.addEdge(0, 3); g.addEdge(3, 4); g.addEdge(4, 0); if (g.isEulerianCycle()) Console.WriteLine("Given directed " + "graph is eulerian "); else Console.WriteLine("Given directed " + "graph is NOT eulerian "); } } // This code is contributed by Princi Singh
Javascript
<script> // A Javascript program to check if a given directed graph is Eulerian or not // This class represents a directed graph using adjacency // list representation class Graph { // Constructor constructor(v) { this.V = v; this.adj = new Array(v); this.in=new Array(v); for (let i=0; i<v; ++i) { this.adj[i] = []; this.in[i]=0; } } //Function to add an edge into the graph addEdge(v,w) { this.adj[v].push(w); this.in[w]++; } // A recursive function to print DFS starting from v DFSUtil(v,visited) { // Mark the current node as visited visited[v] = true; let n; // Recur for all the vertices adjacent to this vertex for(let i of this.adj[v]) { n = i; if (!visited[n]) this.DFSUtil(n,visited); } } // Function that returns reverse (or transpose) of this graph getTranspose() { let g = new Graph(this.V); for (let v = 0; v < this.V; v++) { // Recur for all the vertices adjacent to this vertex for(let i of this.adj[v]) { g.adj[i].push(v); (g.in[v])++; } } return g; } // The main function that returns true if graph is strongly // connected isSC() { // Step 1: Mark all the vertices as not visited (For // first DFS) let visited = new Array(this.V); for (let i = 0; i < this.V; i++) visited[i] = false; // Step 2: Do DFS traversal starting from the first vertex. this.DFSUtil(0, visited); // If DFS traversal doesn't visit all vertices, then return false. for (let i = 0; i < this.V; i++) if (visited[i] == false) return false; // Step 3: Create a reversed graph let gr = this.getTranspose(); // Step 4: Mark all the vertices as not visited (For second DFS) for (let i = 0; i < this.V; i++) visited[i] = false; // Step 5: Do DFS for reversed graph starting from first vertex. // Starting Vertex must be same starting point of first DFS gr.DFSUtil(0, visited); // If all vertices are not visited in second DFS, then // return false for (let i = 0; i < this.V; i++) if (visited[i] == false) return false; return true; } /* This function returns true if the directed graph has a eulerian cycle, otherwise returns false */ isEulerianCycle() { // Check if all non-zero degree vertices are connected if (this.isSC() == false) return false; // Check if in degree and out degree of every vertex is same for (let i = 0; i < this.V; i++) if (this.adj[i].length != this.in[i]) return false; return true; } } let g = new Graph(5); g.addEdge(1, 0); g.addEdge(0, 2); g.addEdge(2, 1); g.addEdge(0, 3); g.addEdge(3, 4); g.addEdge(4, 0); if (g.isEulerianCycle()) document.write("Given directed graph is eulerian "); else document.write("Given directed graph is NOT eulerian "); // This code is contributed by avanitrachhadiya2155 </script>
Given directed graph is eulerian n
La complejidad temporal de la implementación anterior es O(V + E) ya que el algoritmo de Kosaraju toma el tiempo O(V + E). Después de ejecutar el algoritmo de Kosaraju, atravesamos todos los vértices y comparamos el grado con el grado, lo que lleva un tiempo O(V).
Vea lo siguiente como una aplicación de esto.
Encuentra si la array dada de strings se puede enstringr para formar un círculo .
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA