Clasificación rápida iterativa

A continuación se muestra una implementación recursiva típica de Quick Sort que usa el último elemento como pivote. 
 

C++

// CPP code for recursive function of Quicksort
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to swap numbers
void swap(int* a, int* b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
  
/* This function takes last element as pivot,
   places the pivot element at its correct
   position in sorted  array, and places
   all smaller (smaller than pivot) to left
   of pivot and all greater elements to 
   right of pivot */
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
void quickSort(int A[], int l, int h)
{
    if (l < h) {
        /* Partitioning index */
        int p = partition(A, l, h);
        quickSort(A, l, p - 1);
        quickSort(A, p + 1, h);
    }
}
  
// Driver code
int main()
{
  
    int n = 5;
    int arr[n] = { 4, 2, 6, 9, 2 };
  
    quickSort(arr, 0, n - 1);
  
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
  
    return 0;
}

Java

// Java program for implementation of QuickSort
import java.util.*;
  
class QuickSort {
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    static int partition(int arr[], int low, int high)
    {
        int pivot = arr[high];
        int i = (low - 1); // index of smaller element
        for (int j = low; j <= high - 1; j++) {
            // If current element is smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high] (or pivot)
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* The main function that implements QuickSort()
    arr[] --> Array to be sorted,
    low --> Starting index,
    high --> Ending index */
    static void qSort(int arr[], int low, int high)
    {
        if (low < high) {
            /* pi is partitioning index, arr[pi] is
            now at right place */
            int pi = partition(arr, low, high);
  
            // Recursively sort elements before
            // partition and after partition
            qSort(arr, low, pi - 1);
            qSort(arr, pi + 1, high);
        }
    }
  
    // Driver code
    public static void main(String args[])
    {
  
        int n = 5;
        int arr[] = { 4, 2, 6, 9, 2 };
  
        qSort(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }
}

Python3

# A typical recursive Python
# implementation of QuickSort
  
# Function takes last element as pivot,
# places the pivot element at its correct
# position in sorted array, and places all
# smaller (smaller than pivot) to left of
# pivot and all greater elements to right
# of pivot
def partition(arr, low, high):
    i = (low - 1)         # index of smaller element
    pivot = arr[high]     # pivot
  
    for j in range(low, high):
  
        # If current element is smaller 
        # than or equal to pivot
        if arr[j] <= pivot:
          
            # increment index of
            # smaller element
            i += 1
            arr[i], arr[j] = arr[j], arr[i]
  
    arr[i + 1], arr[high] = arr[high], arr[i + 1]
    return (i + 1)
  
# The main function that implements QuickSort
# arr[] --> Array to be sorted,
# low --> Starting index,
# high --> Ending index
  
# Function to do Quick sort
def quickSort(arr, low, high):
    if low < high:
  
        # pi is partitioning index, arr[p] is now
        # at right place
        pi = partition(arr, low, high)
  
        # Separately sort elements before
        # partition and after partition
        quickSort(arr, low, pi-1)
        quickSort(arr, pi + 1, high)
  
# Driver Code
if __name__ == '__main__' :
      
    arr = [4, 2, 6, 9, 2]
    n = len(arr)
      
    # Calling quickSort function
    quickSort(arr, 0, n - 1)
      
    for i in range(n):
        print(arr[i], end = " ")

C#

// C# program for implementation of
// QuickSort
using System;
  
class GFG {
  
    /* This function takes last element
    as pivot, places the pivot element
    at its correct position in sorted
    array, and places all smaller 
    (smaller than pivot) to left of
    pivot and all greater elements to 
    right of pivot */
    static int partition(int[] arr,
                         int low, int high)
    {
        int temp;
        int pivot = arr[high];
  
        // index of smaller element
        int i = (low - 1);
        for (int j = low; j <= high - 1; j++) {
  
            // If current element is
            // smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high]
        // (or pivot)
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* The main function that implements
    QuickSort() arr[] --> Array to be 
    sorted,
    low --> Starting index,
    high --> Ending index */
    static void qSort(int[] arr, int low,
                      int high)
    {
        if (low < high) {
            /* pi is partitioning index, 
            arr[pi] is now at right place */
            int pi = partition(arr, low, high);
  
            // Recursively sort elements
            // before partition and after
            // partition
            qSort(arr, low, pi - 1);
            qSort(arr, pi + 1, high);
        }
    }
  
    // Driver code
    public static void Main()
    {
  
        int n = 5;
        int[] arr = { 4, 2, 6, 9, 2 };
  
        qSort(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
}
  
// This code is contributed by nitin mittal.

PHP

<?php
// PHP code for recursive function 
// of Quicksort 
  
// Function to swap numbers 
function swap(&$a, &$b)
{ 
    $temp = $a; 
    $a = $b; 
    $b = $temp; 
} 
  
/* This function takes last element as pivot, 
places the pivot element at its correct 
position in sorted array, and places 
all smaller (smaller than pivot) to left 
of pivot and all greater elements to 
right of pivot */
function partition (&$arr, $l, $h) 
{ 
    $x = $arr[$h]; 
    $i = ($l - 1); 
  
    for ($j = $l; $j <= $h - 1; $j++) 
    { 
        if ($arr[$j] <= $x) 
        { 
            $i++; 
            swap ($arr[$i], $arr[$j]); 
        } 
    } 
    swap ($arr[$i + 1], $arr[$h]); 
    return ($i + 1); 
} 
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
function quickSort(&$A, $l, $h) 
{ 
    if ($l < $h) 
    { 
        /* Partitioning index */
        $p = partition($A, $l, $h); 
        quickSort($A, $l, $p - 1); 
        quickSort($A, $p + 1, $h); 
    } 
      
} 
  
// Driver code 
$n = 5; 
$arr = array(4, 2, 6, 9, 2); 
  
quickSort($arr, 0, $n - 1); 
  
for($i = 0; $i < $n; $i++)
{ 
    echo $arr[$i] . " "; 
} 
  
// This code is contributed by
// rathbhupendra
?>

Javascript

<script>
  
    // JavaScript program for implementation of QuickSort
      
    /* This function takes last element
    as pivot, places the pivot element
    at its correct position in sorted
    array, and places all smaller 
    (smaller than pivot) to left of
    pivot and all greater elements to 
    right of pivot */
    function partition(arr, low, high)
    {
        let temp;
        let pivot = arr[high];
    
        // index of smaller element
        let i = (low - 1);
        for (let j = low; j <= high - 1; j++) {
    
            // If current element is
            // smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
    
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
    
        // swap arr[i+1] and arr[high]
        // (or pivot)
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
    
        return i + 1;
    }
    
    /* The main function that implements
    QuickSort() arr[] --> Array to be 
    sorted,
    low --> Starting index,
    high --> Ending index */
    function qSort(arr, low, high)
    {
        if (low < high) {
            /* pi is partitioning index, 
            arr[pi] is now at right place */
            let pi = partition(arr, low, high);
    
            // Recursively sort elements
            // before partition and after
            // partition
            qSort(arr, low, pi - 1);
            qSort(arr, pi + 1, high);
        }
    }
      
    let n = 5;
    let arr = [ 4, 2, 6, 9, 2 ];
  
    qSort(arr, 0, n - 1);
  
    for (let i = 0; i < n; i++)
      document.write(arr[i] + " ");
    
</script>

Producción:  

2 2 4 6 9

Complete Interview Preparation - GFG

La implementación anterior se puede optimizar de muchas maneras
1) La implementación anterior utiliza el último índice como pivote. Esto provoca el peor de los casos en arrays ya ordenadas, que es un caso común. El problema se puede resolver eligiendo un índice aleatorio para el pivote o eligiendo el índice medio de la partición o eligiendo la mediana del primer, medio y último elemento de la partición para el pivote. (Vea esto para más detalles)
2) Para reducir la profundidad de recurrencia, recurra primero para la mitad más pequeña de la array y use una llamada de cola para recurrir a la otra. 
3) La ordenación por inserción funciona mejor para pequeños subarreglos. La ordenación por inserción se puede usar para invocaciones en arreglos tan pequeños (es decir, donde la longitud es menor que un umbral t determinado experimentalmente). Por ejemplo,esta implementación de biblioteca de Quicksort usa la ordenación por inserción por debajo del tamaño 7. 
A pesar de las optimizaciones anteriores, la función sigue siendo recursiva y usa la pila de llamadas de función para almacenar valores intermedios de l y h. La pila de llamadas de función almacena otra información de contabilidad junto con parámetros. Además, las llamadas a funciones implican gastos generales como almacenar registros de activación de la función que llama y luego reanudar la ejecución. 
La función anterior se puede convertir fácilmente a una versión iterativa con la ayuda de una pila auxiliar. A continuación se muestra una implementación iterativa del código recursivo anterior. 
 

C++

// An iterative implementation of quick sort
#include <bits/stdc++.h>
using namespace std;
  
// A utility function to swap two elements
void swap(int* a, int* b)
{
    int t = *a;
    *a = *b;
    *b = t;
}
  
/* This function is same in both iterative and recursive*/
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
void quickSortIterative(int arr[], int l, int h)
{
    // Create an auxiliary stack
    int stack[h - l + 1];
  
    // initialize top of stack
    int top = -1;
  
    // push initial values of l and h to stack
    stack[++top] = l;
    stack[++top] = h;
  
    // Keep popping from stack while is not empty
    while (top >= 0) {
        // Pop h and l
        h = stack[top--];
        l = stack[top--];
  
        // Set pivot element at its correct position
        // in sorted array
        int p = partition(arr, l, h);
  
        // If there are elements on left side of pivot,
        // then push left side to stack
        if (p - 1 > l) {
            stack[++top] = l;
            stack[++top] = p - 1;
        }
  
        // If there are elements on right side of pivot,
        // then push right side to stack
        if (p + 1 < h) {
            stack[++top] = p + 1;
            stack[++top] = h;
        }
    }
}
  
// A utility function to print contents of arr
void printArr(int arr[], int n)
{
    int i;
    for (i = 0; i < n; ++i)
        cout << arr[i] << " ";
}
  
// Driver code
int main()
{
    int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
    int n = sizeof(arr) / sizeof(*arr);
    quickSortIterative(arr, 0, n - 1);
    printArr(arr, n);
    return 0;
}
  
// This is code is contributed by rathbhupendra

C

// An iterative implementation of quick sort
#include <stdio.h>
  
// A utility function to swap two elements
void swap(int* a, int* b)
{
    int t = *a;
    *a = *b;
    *b = t;
}
  
/* This function is same in both iterative and recursive*/
int partition(int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
    for (int j = l; j <= h - 1; j++) {
        if (arr[j] <= x) {
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, 
   l  --> Starting index, 
   h  --> Ending index */
void quickSortIterative(int arr[], int l, int h)
{
    // Create an auxiliary stack
    int stack[h - l + 1];
  
    // initialize top of stack
    int top = -1;
  
    // push initial values of l and h to stack
    stack[++top] = l;
    stack[++top] = h;
  
    // Keep popping from stack while is not empty
    while (top >= 0) {
        // Pop h and l
        h = stack[top--];
        l = stack[top--];
  
        // Set pivot element at its correct position
        // in sorted array
        int p = partition(arr, l, h);
  
        // If there are elements on left side of pivot,
        // then push left side to stack
        if (p - 1 > l) {
            stack[++top] = l;
            stack[++top] = p - 1;
        }
  
        // If there are elements on right side of pivot,
        // then push right side to stack
        if (p + 1 < h) {
            stack[++top] = p + 1;
            stack[++top] = h;
        }
    }
}
  
// A utility function to print contents of arr
void printArr(int arr[], int n)
{
    int i;
    for (i = 0; i < n; ++i)
        printf("%d ", arr[i]);
}
  
// Driver program to test above functions
int main()
{
    int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
    int n = sizeof(arr) / sizeof(*arr);
    quickSortIterative(arr, 0, n - 1);
    printArr(arr, n);
    return 0;
}

Java

// Java program for implementation of QuickSort
import java.util.*;
  
class QuickSort {
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    static int partition(int arr[], int low, int high)
    {
        int pivot = arr[high];
  
        // index of smaller element
        int i = (low - 1);
        for (int j = low; j <= high - 1; j++) {
            // If current element is smaller than or
            // equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                int temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high] (or pivot)
        int temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* A[] --> Array to be sorted, 
   l  --> Starting index, 
   h  --> Ending index */
    static void quickSortIterative(int arr[], int l, int h)
    {
        // Create an auxiliary stack
        int[] stack = new int[h - l + 1];
  
        // initialize top of stack
        int top = -1;
  
        // push initial values of l and h to stack
        stack[++top] = l;
        stack[++top] = h;
  
        // Keep popping from stack while is not empty
        while (top >= 0) {
            // Pop h and l
            h = stack[top--];
            l = stack[top--];
  
            // Set pivot element at its correct position
            // in sorted array
            int p = partition(arr, l, h);
  
            // If there are elements on left side of pivot,
            // then push left side to stack
            if (p - 1 > l) {
                stack[++top] = l;
                stack[++top] = p - 1;
            }
  
            // If there are elements on right side of pivot,
            // then push right side to stack
            if (p + 1 < h) {
                stack[++top] = p + 1;
                stack[++top] = h;
            }
        }
    }
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 4, 3, 5, 2, 1, 3, 2, 3 };
        int n = 8;
  
        // Function calling
        quickSortIterative(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }
}

Python

# Python program for implementation of Quicksort 
  
# This function is same in both iterative and recursive
def partition(arr, l, h):
    i = ( l - 1 )
    x = arr[h]
  
    for j in range(l, h):
        if   arr[j] <= x:
  
            # increment index of smaller element
            i = i + 1
            arr[i], arr[j] = arr[j], arr[i]
  
    arr[i + 1], arr[h] = arr[h], arr[i + 1]
    return (i + 1)
  
# Function to do Quick sort
# arr[] --> Array to be sorted,
# l  --> Starting index,
# h  --> Ending index
def quickSortIterative(arr, l, h):
  
    # Create an auxiliary stack
    size = h - l + 1
    stack = [0] * (size)
  
    # initialize top of stack
    top = -1
  
    # push initial values of l and h to stack
    top = top + 1
    stack[top] = l
    top = top + 1
    stack[top] = h
  
    # Keep popping from stack while is not empty
    while top >= 0:
  
        # Pop h and l
        h = stack[top]
        top = top - 1
        l = stack[top]
        top = top - 1
  
        # Set pivot element at its correct position in
        # sorted array
        p = partition( arr, l, h )
  
        # If there are elements on left side of pivot,
        # then push left side to stack
        if p-1 > l:
            top = top + 1
            stack[top] = l
            top = top + 1
            stack[top] = p - 1
  
        # If there are elements on right side of pivot,
        # then push right side to stack
        if p + 1 < h:
            top = top + 1
            stack[top] = p + 1
            top = top + 1
            stack[top] = h
  
# Driver code to test above
arr = [4, 3, 5, 2, 1, 3, 2, 3]
n = len(arr)
quickSortIterative(arr, 0, n-1)
print ("Sorted array is:")
for i in range(n):
    print ("% d" % arr[i]),
  
# This code is contributed by Mohit Kumra

C#

// C# program for implementation of QuickSort
using System;
  
class GFG {
  
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    static int partition(int[] arr, int low,
                         int high)
    {
        int temp;
        int pivot = arr[high];
  
        // index of smaller element
        int i = (low - 1);
        for (int j = low; j <= high - 1; j++) {
            // If current element is smaller
            // than or equal to pivot
            if (arr[j] <= pivot) {
                i++;
  
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
  
        // swap arr[i+1] and arr[high]
        // (or pivot)
  
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
  
        return i + 1;
    }
  
    /* A[] --> Array to be sorted, 
    l --> Starting index, 
    h --> Ending index */
    static void quickSortIterative(int[] arr,
                                   int l, int h)
    {
        // Create an auxiliary stack
        int[] stack = new int[h - l + 1];
  
        // initialize top of stack
        int top = -1;
  
        // push initial values of l and h to
        // stack
        stack[++top] = l;
        stack[++top] = h;
  
        // Keep popping from stack while
        // is not empty
        while (top >= 0) {
            // Pop h and l
            h = stack[top--];
            l = stack[top--];
  
            // Set pivot element at its
            // correct position in
            // sorted array
            int p = partition(arr, l, h);
  
            // If there are elements on
            // left side of pivot, then
            // push left side to stack
            if (p - 1 > l) {
                stack[++top] = l;
                stack[++top] = p - 1;
            }
  
            // If there are elements on
            // right side of pivot, then
            // push right side to stack
            if (p + 1 < h) {
                stack[++top] = p + 1;
                stack[++top] = h;
            }
        }
    }
  
    // Driver code
    public static void Main()
    {
        int[] arr = { 4, 3, 5, 2, 1, 3, 2, 3 };
        int n = 8;
  
        // Function calling
        quickSortIterative(arr, 0, n - 1);
  
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
}
  
// This code is contributed by anuj_67.

PHP

<?php
// An iterative implementation of quick sort 
  
// A utility function to swap two elements 
function swap ( &$a, &$b ) 
{ 
    $t = $a; 
    $a = $b; 
    $b = $t; 
} 
  
/* This function is same in both iterative and recursive*/
function partition (&$arr, $l, $h) 
{ 
    $x = $arr[$h]; 
    $i = ($l - 1); 
  
    for ($j = $l; $j <= $h- 1; $j++) 
    { 
        if ($arr[$j] <= $x) 
        { 
            $i++; 
            swap ($arr[$i], $arr[$j]); 
        } 
    } 
    swap ($arr[$i + 1], $arr[$h]); 
    return ($i + 1); 
} 
  
/* A[] --> Array to be sorted, 
l --> Starting index, 
h --> Ending index */
function quickSortIterative (&$arr, $l, $h) 
{ 
    // Create an auxiliary stack 
    $stack=array_fill(0, $h - $l + 1, 0); 
  
    // initialize top of stack 
    $top = -1; 
  
    // push initial values of l and h to stack 
    $stack[ ++$top ] = $l; 
    $stack[ ++$top ] = $h; 
  
    // Keep popping from stack while is not empty 
    while ( $top >= 0 ) 
    { 
        // Pop h and l 
        $h = $stack[ $top-- ]; 
        $l = $stack[ $top-- ]; 
  
        // Set pivot element at its correct position 
        // in sorted array 
        $p = partition( $arr, $l, $h ); 
  
        // If there are elements on left side of pivot, 
        // then push left side to stack 
        if ( $p-1 > $l ) 
        { 
            $stack[ ++$top ] = $l; 
            $stack[ ++$top ] = $p - 1; 
        } 
  
        // If there are elements on right side of pivot, 
        // then push right side to stack 
        if ( $p+1 < $h ) 
        { 
            $stack[ ++$top ] = $p + 1; 
            $stack[ ++$top ] = $h; 
        } 
    } 
} 
  
// A utility function to print contents of arr 
function printArr( $arr, $n ) 
{ 
    for ( $i = 0; $i < $n; ++$i ) 
        echo $arr[$i]." "; 
} 
  
// Driver code 
    $arr = array(4, 3, 5, 2, 1, 3, 2, 3); 
    $n = count($arr); 
    quickSortIterative($arr, 0, $n - 1 ); 
    printArr($arr, $n ); 
  
// This is code is contributed by chandan_jnu
?>

Javascript

<script>
    // Javascript program for implementation of QuickSort
      
    /* This function takes last element as pivot,
    places the pivot element at its correct
    position in sorted array, and places all
    smaller (smaller than pivot) to left of
    pivot and all greater elements to right
    of pivot */
    function partition(arr, low, high)
    {
        let temp;
        let pivot = arr[high];
   
        // index of smaller element
        let i = (low - 1);
        for (let j = low; j <= high - 1; j++) {
            // If current element is smaller
            // than or equal to pivot
            if (arr[j] <= pivot) {
                i++;
   
                // swap arr[i] and arr[j]
                temp = arr[i];
                arr[i] = arr[j];
                arr[j] = temp;
            }
        }
   
        // swap arr[i+1] and arr[high]
        // (or pivot)
   
        temp = arr[i + 1];
        arr[i + 1] = arr[high];
        arr[high] = temp;
   
        return i + 1;
    }
   
    /* A[] --> Array to be sorted,
    l --> Starting index,
    h --> Ending index */
    function quickSortIterative(arr, l, h)
    {
        // Create an auxiliary stack
        let stack = new Array(h - l + 1);
        stack.fill(0);
   
        // initialize top of stack
        let top = -1;
   
        // push initial values of l and h to
        // stack
        stack[++top] = l;
        stack[++top] = h;
   
        // Keep popping from stack while
        // is not empty
        while (top >= 0) {
            // Pop h and l
            h = stack[top--];
            l = stack[top--];
   
            // Set pivot element at its
            // correct position in
            // sorted array
            let p = partition(arr, l, h);
   
            // If there are elements on
            // left side of pivot, then
            // push left side to stack
            if (p - 1 > l) {
                stack[++top] = l;
                stack[++top] = p - 1;
            }
   
            // If there are elements on
            // right side of pivot, then
            // push right side to stack
            if (p + 1 < h) {
                stack[++top] = p + 1;
                stack[++top] = h;
            }
        }
    }
      
    let arr = [ 4, 3, 5, 2, 1, 3, 2, 3 ];
    let n = 8;
  
    // Function calling
    quickSortIterative(arr, 0, n - 1);
  
    for (let i = 0; i < n; i++)
      document.write(arr[i] + " ");
  
// This code is contributed by mukesh07.
</script>

Echa un vistazo al curso de autoaprendizaje de DSA

Producción: 

1 2 2 3 3 3 4 5

Las optimizaciones mencionadas anteriormente para la ordenación rápida recursiva también se pueden aplicar a la versión iterativa.
1) El proceso de partición es el mismo tanto en recursivo como en iterativo. Las mismas técnicas para elegir el pivote óptimo también se pueden aplicar a la versión iterativa.
2) Para reducir el tamaño de la pila, primero presione los índices de la mitad más pequeña.
3) Utilice la ordenación por inserción cuando el tamaño se reduzca por debajo de un umbral calculado experimentalmente.
Referencias:  
http://en.wikipedia.org/wiki/Quicksort
Este artículo fue compilado por Aashish Barnwal y revisado por el equipo de GeeksforGeeks. Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *