Dadas dos arrays de enteros donde el tamaño máximo de la primera array es grande y el de la segunda array es pequeño. Tu tarea es encontrar si hay un par en la primera array cuya suma está presente en la segunda array.
Ejemplos:
Input: 4 1 5 10 8 3 2 20 13 Output: 1
Enfoque: Tenemos x + y = z. Esto se puede reescribir como x = z – y. Esto significa que necesitamos encontrar un elemento x en el arreglo 1 tal que sea el resultado de z (segundo arreglo) – y (primer arreglo). Para esto, use hashing para realizar un seguimiento de dicho elemento x.
C++
// C++ code for finding required pairs #include <bits/stdc++.h> using namespace std; // The function to check if beautiful pair exists bool pairExists(int arr1[], int m, int arr2[], int n) { // Set for hashing unordered_set<int> s; // Traversing the first array for (int i = 0; i < m; i++) { // Traversing the second array to check for // every j corresponding to single i for (int j = 0; j < n; j++) { // x + y = z => x = y - z if (s.find(arr2[j] - arr1[i]) != s.end()) // if such x exists then we return true return true; } // hash to make use of it next time s.insert(arr1[i]); } // no pair exists return false; } // Driver Code int main() { int arr1[] = { 1, 5, 10, 8 }; int arr2[] = { 2, 20, 13 }; // If pair exists then 1 else 0 // 2nd argument as size of first array // fourth argument as sizeof 2nd array if (pairExists(arr1, 4, arr2, 3)) cout << 1 << endl; else cout << 0 << endl; return 0; }
Java
// Java code for finding required pairs import java.util.*; class GFG { // The function to check if beautiful pair exists static boolean pairExists(int []arr1, int m, int []arr2, int n) { // Set for hashing Set<Integer> s =new HashSet<Integer>(); // Traversing the first array for (int i = 0; i < m; i++) { // Traversing the second array to check for // every j corresponding to single i for (int j = 0; j < n; j++) { // x + y = z => x = y - z if (s.contains(arr2[j] - arr1[i])) // if such x exists then we return true return true; } // hash to make use of it next time s.add(arr1[i]); } // no pair exists return false; } // Driver Code public static void main(String []args) { int []arr1 = { 1, 5, 10, 8 }; int []arr2 = { 2, 20, 13 }; // If pair exists then 1 else 0 // 2nd argument as size of first array // fourth argument as sizeof 2nd array if (pairExists(arr1, 4, arr2, 3)) System.out.println(1); else System.out.println(0); } // This code is contributed by ihritik }
Python3
# Python3 code for finding required pairs from typing import List # The function to check if beautiful pair exists def pairExists(arr1: List[int], m: int, arr2: List[int], n: int) -> bool: # Set for hashing s = set() # Traversing the first array for i in range(m): # Traversing the second array to check for # every j corresponding to single i for j in range(n): # x + y = z => x = y - z if (arr2[2] - arr1[2]) not in s: # If such x exists then we # return true return True # Hash to make use of it next time s.add(arr1[i]) # No pair exists return False # Driver Code if __name__ == "__main__": arr1 = [ 1, 5, 10, 8 ] arr2 = [ 2, 20, 13 ] # If pair exists then 1 else 0 # 2nd argument as size of first array # fourth argument as sizeof 2nd array if (pairExists(arr1, 4, arr2, 3)): print(1) else: print(0) # This code is contributed by sanjeev2552
C#
// C# code for finding required pairs using System; using System.Collections.Generic; class GFG { // The function to check if // beautiful pair exists static bool pairExists(int []arr1, int m, int []arr2, int n) { // Set for hashing HashSet<int> s = new HashSet<int>(); // Traversing the first array for (int i = 0; i < m; i++) { // Traversing the second array to check for // every j corresponding to single i for (int j = 0; j < n; j++) { // x + y = z => x = y - z if (s.Contains(arr2[j] - arr1[i])) // if such x exists then we return true return true; } // hash to make use of it next time s.Add(arr1[i]); } // no pair exists return false; } // Driver Code public static void Main() { int []arr1 = { 1, 5, 10, 8 }; int []arr2 = { 2, 20, 13 }; // If pair exists then 1 else 0 // 2nd argument as size of first array // fourth argument as sizeof 2nd array if (pairExists(arr1, 4, arr2, 3)) Console.WriteLine(1); else Console.WriteLine(0); } } /* This code contributed by PrinciRaj1992 */
Javascript
<script> // JavaScript code for finding required pairs // The function to check if beautiful pair exists function pairExists(arr1, m, arr2, n) { // Set for hashing let s = new Set(); // Traversing the first array for (let i = 0; i < m; i++) { // Traversing the second array to check for // every j corresponding to single i for (let j = 0; j < n; j++) { // x + y = z => x = y - z if (s.has(arr2[j] - arr1[i])) // if such x exists then we return true return true; } // hash to make use of it next time s.add(arr1[i]); } // no pair exists return false; } // Driver Code let arr1 = [1, 5, 10, 8]; let arr2 = [2, 20, 13]; // If pair exists then 1 else 0 // 2nd argument as size of first array // fourth argument as sizeof 2nd array if (pairExists(arr1, 4, arr2, 3)) document.write(1 + "<br>"); else document.write(0 + "<br>"); </script>
Producción:
1
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA