Presentamos la coloración de gráficos y las aplicaciones en la publicación anterior. Como se discutió en la publicación anterior, la coloración de gráficos se usa ampliamente. Desafortunadamente, no existe un algoritmo eficiente disponible para colorear un gráfico con un número mínimo de colores, ya que el problema es un problema NP completo conocido . Sin embargo, existen algoritmos aproximados para resolver el problema. A continuación se muestra el algoritmo Greedy básico para asignar colores. No garantiza el uso de colores mínimos, pero garantiza un límite superior en la cantidad de colores. El algoritmo básico nunca usa más de d+1 colores donde d es el grado máximo de un vértice en el gráfico dado.
Algoritmo de coloración codicioso básico:
C++
// A C++ program to implement greedy algorithm for graph coloring #include <iostream> #include <list> using namespace std; // A class that represents an undirected graph class Graph { int V; // No. of vertices list<int> *adj; // A dynamic array of adjacency lists public: // Constructor and destructor Graph(int V) { this->V = V; adj = new list<int>[V]; } ~Graph() { delete [] adj; } // function to add an edge to graph void addEdge(int v, int w); // Prints greedy coloring of the vertices void greedyColoring(); }; void Graph::addEdge(int v, int w) { adj[v].push_back(w); adj[w].push_back(v); // Note: the graph is undirected } // Assigns colors (starting from 0) to all vertices and prints // the assignment of colors void Graph::greedyColoring() { int result[V]; // Assign the first color to first vertex result[0] = 0; // Initialize remaining V-1 vertices as unassigned for (int u = 1; u < V; u++) result[u] = -1; // no color is assigned to u // A temporary array to store the available colors. True // value of available[cr] would mean that the color cr is // assigned to one of its adjacent vertices bool available[V]; for (int cr = 0; cr < V; cr++) available[cr] = false; // Assign colors to remaining V-1 vertices for (int u = 1; u < V; u++) { // Process all adjacent vertices and flag their colors // as unavailable list<int>::iterator i; for (i = adj[u].begin(); i != adj[u].end(); ++i) if (result[*i] != -1) available[result[*i]] = true; // Find the first available color int cr; for (cr = 0; cr < V; cr++) if (available[cr] == false) break; result[u] = cr; // Assign the found color // Reset the values back to false for the next iteration for (i = adj[u].begin(); i != adj[u].end(); ++i) if (result[*i] != -1) available[result[*i]] = false; } // print the result for (int u = 0; u < V; u++) cout << "Vertex " << u << " ---> Color " << result[u] << endl; } // Driver program to test above function int main() { Graph g1(5); g1.addEdge(0, 1); g1.addEdge(0, 2); g1.addEdge(1, 2); g1.addEdge(1, 3); g1.addEdge(2, 3); g1.addEdge(3, 4); cout << "Coloring of graph 1 \n"; g1.greedyColoring(); Graph g2(5); g2.addEdge(0, 1); g2.addEdge(0, 2); g2.addEdge(1, 2); g2.addEdge(1, 4); g2.addEdge(2, 4); g2.addEdge(4, 3); cout << "\nColoring of graph 2 \n"; g2.greedyColoring(); return 0; }
Java
// A Java program to implement greedy algorithm for graph coloring import java.io.*; import java.util.*; import java.util.LinkedList; // This class represents an undirected graph using adjacency list class Graph { private int V; // No. of vertices private LinkedList<Integer> adj[]; //Adjacency List //Constructor Graph(int v) { V = v; adj = new LinkedList[v]; for (int i=0; i<v; ++i) adj[i] = new LinkedList(); } //Function to add an edge into the graph void addEdge(int v,int w) { adj[v].add(w); adj[w].add(v); //Graph is undirected } // Assigns colors (starting from 0) to all vertices and // prints the assignment of colors void greedyColoring() { int result[] = new int[V]; // Initialize all vertices as unassigned Arrays.fill(result, -1); // Assign the first color to first vertex result[0] = 0; // A temporary array to store the available colors. False // value of available[cr] would mean that the color cr is // assigned to one of its adjacent vertices boolean available[] = new boolean[V]; // Initially, all colors are available Arrays.fill(available, true); // Assign colors to remaining V-1 vertices for (int u = 1; u < V; u++) { // Process all adjacent vertices and flag their colors // as unavailable Iterator<Integer> it = adj[u].iterator() ; while (it.hasNext()) { int i = it.next(); if (result[i] != -1) available[result[i]] = false; } // Find the first available color int cr; for (cr = 0; cr < V; cr++){ if (available[cr]) break; } result[u] = cr; // Assign the found color // Reset the values back to true for the next iteration Arrays.fill(available, true); } // print the result for (int u = 0; u < V; u++) System.out.println("Vertex " + u + " ---> Color " + result[u]); } // Driver method public static void main(String args[]) { Graph g1 = new Graph(5); g1.addEdge(0, 1); g1.addEdge(0, 2); g1.addEdge(1, 2); g1.addEdge(1, 3); g1.addEdge(2, 3); g1.addEdge(3, 4); System.out.println("Coloring of graph 1"); g1.greedyColoring(); System.out.println(); Graph g2 = new Graph(5); g2.addEdge(0, 1); g2.addEdge(0, 2); g2.addEdge(1, 2); g2.addEdge(1, 4); g2.addEdge(2, 4); g2.addEdge(4, 3); System.out.println("Coloring of graph 2 "); g2.greedyColoring(); } } // This code is contributed by Aakash Hasija
Python3
# Python3 program to implement greedy # algorithm for graph coloring def addEdge(adj, v, w): adj[v].append(w) # Note: the graph is undirected adj[w].append(v) return adj # Assigns colors (starting from 0) to all # vertices and prints the assignment of colors def greedyColoring(adj, V): result = [-1] * V # Assign the first color to first vertex result[0] = 0; # A temporary array to store the available colors. # True value of available[cr] would mean that the # color cr is assigned to one of its adjacent vertices available = [False] * V # Assign colors to remaining V-1 vertices for u in range(1, V): # Process all adjacent vertices and # flag their colors as unavailable for i in adj[u]: if (result[i] != -1): available[result[i]] = True # Find the first available color cr = 0 while cr < V: if (available[cr] == False): break cr += 1 # Assign the found color result[u] = cr # Reset the values back to false # for the next iteration for i in adj[u]: if (result[i] != -1): available[result[i]] = False # Print the result for u in range(V): print("Vertex", u, " ---> Color", result[u]) # Driver Code if __name__ == '__main__': g1 = [[] for i in range(5)] g1 = addEdge(g1, 0, 1) g1 = addEdge(g1, 0, 2) g1 = addEdge(g1, 1, 2) g1 = addEdge(g1, 1, 3) g1 = addEdge(g1, 2, 3) g1 = addEdge(g1, 3, 4) print("Coloring of graph 1 ") greedyColoring(g1, 5) g2 = [[] for i in range(5)] g2 = addEdge(g2, 0, 1) g2 = addEdge(g2, 0, 2) g2 = addEdge(g2, 1, 2) g2 = addEdge(g2, 1, 4) g2 = addEdge(g2, 2, 4) g2 = addEdge(g2, 4, 3) print("\nColoring of graph 2") greedyColoring(g2, 5) # This code is contributed by mohit kumar 29
Javascript
<script> // Javascript program to implement greedy // algorithm for graph coloring // This class represents a directed graph // using adjacency list representation class Graph{ // Constructor constructor(v) { this.V = v; this.adj = new Array(v); for(let i = 0; i < v; ++i) this.adj[i] = []; this.Time = 0; } // Function to add an edge into the graph addEdge(v,w) { this.adj[v].push(w); // Graph is undirected this.adj[w].push(v); } // Assigns colors (starting from 0) to all // vertices and prints the assignment of colors greedyColoring() { let result = new Array(this.V); // Initialize all vertices as unassigned for(let i = 0; i < this.V; i++) result[i] = -1; // Assign the first color to first vertex result[0] = 0; // A temporary array to store the available // colors. False value of available[cr] would // mean that the color cr is assigned to one // of its adjacent vertices let available = new Array(this.V); // Initially, all colors are available for(let i = 0; i < this.V; i++) available[i] = true; // Assign colors to remaining V-1 vertices for(let u = 1; u < this.V; u++) { // Process all adjacent vertices and // flag their colors as unavailable for(let it of this.adj[u]) { let i = it; if (result[i] != -1) available[result[i]] = false; } // Find the first available color let cr; for(cr = 0; cr < this.V; cr++) { if (available[cr]) break; } // Assign the found color result[u] = cr; // Reset the values back to true // for the next iteration for(let i = 0; i < this.V; i++) available[i] = true; } // print the result for(let u = 0; u < this.V; u++) document.write("Vertex " + u + " ---> Color " + result[u] + "<br>"); } } // Driver code let g1 = new Graph(5); g1.addEdge(0, 1); g1.addEdge(0, 2); g1.addEdge(1, 2); g1.addEdge(1, 3); g1.addEdge(2, 3); g1.addEdge(3, 4); document.write("Coloring of graph 1<br>"); g1.greedyColoring(); document.write("<br>"); let g2 = new Graph(5); g2.addEdge(0, 1); g2.addEdge(0, 2); g2.addEdge(1, 2); g2.addEdge(1, 4); g2.addEdge(2, 4); g2.addEdge(4, 3); document.write("Coloring of graph 2<br> "); g2.greedyColoring(); // This code is contributed by avanitrachhadiya2155 </script>
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA