Dada una lista de arreglos, encuentre todas las combinaciones donde cada combinación contenga un elemento de cada arreglo dado.
Ejemplos:
Input : [ [1, 2], [3, 4] ] Output : 1 3 1 4 2 3 2 4 Input : [ [1], [2, 3, 4], [5] ] Output : 1 2 5 1 3 5 1 4 5
Mantenemos una array de tamaño igual al número total de arrays. Esta array llamada índices nos ayuda a realizar un seguimiento del índice del elemento actual en cada una de las n arrays. Inicialmente, se inicializa con todos los 0 que indican que el índice actual en cada array es el del primer elemento. Seguimos imprimiendo las combinaciones hasta que no se encuentren nuevas combinaciones. Comenzando desde la array más a la derecha, verificamos si hay más elementos en esa array. En caso afirmativo, incrementamos la entrada de esa array en índices, es decir, pasamos al siguiente elemento de esa array. También hacemos que los índices actuales sean 0 en todas las arrays a la derecha de esta array. Seguimos moviéndonos hacia la izquierda para verificar todas las arrays hasta que se encuentre una de ellas. Si no se encuentran más arrays, nos detenemos allí.
Implementación:
C++
// C++ program to find combinations from n // arrays such that one element from each // array is present #include <bits/stdc++.h> using namespace std; // function to print combinations that contain // one element from each of the given arrays void print(vector<vector<int> >& arr) { // number of arrays int n = arr.size(); // to keep track of next element in each of // the n arrays int* indices = new int[n]; // initialize with first element's index for (int i = 0; i < n; i++) indices[i] = 0; while (1) { // print current combination for (int i = 0; i < n; i++) cout << arr[i][indices[i]] << " "; cout << endl; // find the rightmost array that has more // elements left after the current element // in that array int next = n - 1; while (next >= 0 && (indices[next] + 1 >= arr[next].size())) next--; // no such array is found so no more // combinations left if (next < 0) return; // if found move to next element in that // array indices[next]++; // for all arrays to the right of this // array current index again points to // first element for (int i = next + 1; i < n; i++) indices[i] = 0; } } // driver function to test above function int main() { // initializing a vector with 3 empty vectors vector<vector<int> > arr(3, vector<int>(0, 0)); // now entering data // [[1, 2, 3], [4], [5, 6]] arr[0].push_back(1); arr[0].push_back(2); arr[0].push_back(3); arr[1].push_back(4); arr[2].push_back(5); arr[2].push_back(6); print(arr); }
Java
// Java program to find combinations from n // arrays such that one element from each // array is present import java.util.*; class GFG{ // Function to print combinations that contain // one element from each of the given arrays static void print(Vector<Integer> []arr) { // Number of arrays int n = arr.length; // To keep track of next element in // each of the n arrays int []indices = new int[n]; // Initialize with first element's index for(int i = 0; i < n; i++) indices[i] = 0; while (true) { // Print current combination for(int i = 0; i < n; i++) System.out.print( arr[i].get(indices[i]) + " "); System.out.println(); // Find the rightmost array that has more // elements left after the current element // in that array int next = n - 1; while (next >= 0 && (indices[next] + 1 >= arr[next].size())) next--; // No such array is found so no more // combinations left if (next < 0) return; // If found move to next element in that // array indices[next]++; // For all arrays to the right of this // array current index again points to // first element for(int i = next + 1; i < n; i++) indices[i] = 0; } } // Driver code public static void main(String[] args) { // Initializing a vector with 3 empty vectors @SuppressWarnings("unchecked") Vector<Integer> []arr = new Vector[3]; for(int i = 0; i < arr.length; i++) arr[i] = new Vector<Integer>(); // Now entering data // [[1, 2, 3], [4], [5, 6]] arr[0].add(1); arr[0].add(2); arr[0].add(3); arr[1].add(4); arr[2].add(5); arr[2].add(6); print(arr); } } // This code is contributed by amal kumar choubey
Python3
# Python3 program to find combinations from n # arrays such that one element from each # array is present # function to print combinations that contain # one element from each of the given arrays def print1(arr): # number of arrays n = len(arr) # to keep track of next element # in each of the n arrays indices = [0 for i in range(n)] while (1): # print current combination for i in range(n): print(arr[i][indices[i]], end = " ") print() # find the rightmost array that has more # elements left after the current element # in that array next = n - 1 while (next >= 0 and (indices[next] + 1 >= len(arr[next]))): next-=1 # no such array is found so no more # combinations left if (next < 0): return # if found move to next element in that # array indices[next] += 1 # for all arrays to the right of this # array current index again points to # first element for i in range(next + 1, n): indices[i] = 0 # Driver Code # initializing a vector with 3 empty vectors arr = [[] for i in range(3)] # now entering data # [[1, 2, 3], [4], [5, 6]] arr[0].append(1) arr[0].append(2) arr[0].append(3) arr[1].append(4) arr[2].append(5) arr[2].append(6) print1(arr) # This code is contributed by mohit kumar
C#
// C# program to find // combinations from n // arrays such that one // element from each // array is present using System; using System.Collections.Generic; class GFG{ // Function to print combinations // that contain one element from // each of the given arrays static void print(List<int> []arr) { // Number of arrays int n = arr.Length; // To keep track of next // element in each of // the n arrays int []indices = new int[n]; // Initialize with first // element's index for(int i = 0; i < n; i++) indices[i] = 0; while (true) { // Print current combination for(int i = 0; i < n; i++) Console.Write(arr[i][indices[i]] + " "); Console.WriteLine(); // Find the rightmost array // that has more elements // left after the current // element in that array int next = n - 1; while (next >= 0 && (indices[next] + 1 >= arr[next].Count)) next--; // No such array is found // so no more combinations left if (next < 0) return; // If found move to next // element in that array indices[next]++; // For all arrays to the right // of this array current index // again points to first element for(int i = next + 1; i < n; i++) indices[i] = 0; } } // Driver code public static void Main(String[] args) { // Initializing a vector // with 3 empty vectors List<int> []arr = new List<int>[3]; for(int i = 0; i < arr.Length; i++) arr[i] = new List<int>(); // Now entering data // [[1, 2, 3], [4], [5, 6]] arr[0].Add(1); arr[0].Add(2); arr[0].Add(3); arr[1].Add(4); arr[2].Add(5); arr[2].Add(6); print(arr); } } // This code is contributed by shikhasingrajput
Javascript
<script> // Javascript program to find combinations from n // arrays such that one element from each // array is present // Function to print combinations that contain // one element from each of the given arrays function print(arr) { // Number of arrays let n = arr.length; // To keep track of next element in // each of the n arrays let indices = new Array(n); // Initialize with first element's index for(let i = 0; i < n; i++) indices[i] = 0; while (true) { // Print current combination for(let i = 0; i < n; i++) document.write( arr[i][indices[i]] + " "); document.write("<br>"); // Find the rightmost array that has more // elements left after the current element // in that array let next = n - 1; while (next >= 0 && (indices[next] + 1 >= arr[next].length)) next--; // No such array is found so no more // combinations left if (next < 0) return; // If found move to next element in that // array indices[next]++; // For all arrays to the right of this // array current index again points to // first element for(let i = next + 1; i < n; i++) indices[i] = 0; } } // Driver code // Initializing a vector with 3 empty vectors let arr = new Array(3); for(let i = 0; i < arr.length; i++) arr[i] = []; // Now entering data // [[1, 2, 3], [4], [5, 6]] arr[0].push(1); arr[0].push(2); arr[0].push(3); arr[1].push(4); arr[2].push(5); arr[2].push(6); print(arr); // This code is contributed by unknown2108 </script>
1 4 5 1 4 6 2 4 5 2 4 6 3 4 5 3 4 6
Este artículo es una contribución de aditi sharma 2 . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA