Cómo eliminar un elemento específico de la cola

Dada una cola q[] y un entero K, la tarea es definir un método para eliminar un elemento específico de la cola q[] . Si hay varias apariciones del elemento K, elimine la primera de la cola q[].

Ejemplos:

Entrada: q[] = {10, 20, 30, 40, 50, 60}, K = 30
Salida: {10, 20, 40, 50, 60}
Explicación: después de eliminar 30, la cola se convierte en {10, 20 , 40, 50, 60}.

Entrada: q[] = {1, 2, 3, 3}, K = 3
Salida: {1, 2, 3}
Explicación: Después de eliminar la primera aparición de 3, la cola se convierte en {1, 2, 3}. 

Enfoque: La idea es crear una cola temporal ref[] y almacenar todos los elementos en ella, hasta que se encuentre K. Luego, elimine K de la cola original q[] e inserte los elementos restantes nuevamente en la cola q[]. Siga los pasos a continuación para resolver el problema:

A continuación se muestra la implementación del enfoque anterior.

C++

// C++ program for the above approach.
#include <bits/stdc++.h>
using namespace std;
 
// Function to remove an element from
// the queue
void remove(int t, queue<int>& q)
{
 
    // Helper queue to store the elements
    // temporarily.
    queue<int> ref;
    int s = q.size();
    int cnt = 0;
 
    // Finding the value to be removed
    while (q.front() != t and !q.empty()) {
        ref.push(q.front());
        q.pop();
        cnt++;
    }
 
    // If element is not found
    if (q.empty()) {
        cout << "element not found!!" << endl;
        while (!ref.empty()) {
 
            // Pushing all the elements back into q
            q.push(ref.front());
            ref.pop();
        }
    }
 
    // If element is found
    else {
        q.pop();
        while (!ref.empty()) {
 
            // Pushing all the elements back into q
            q.push(ref.front());
            ref.pop();
        }
        int k = s - cnt - 1;
        while (k--) {
 
            // Pushing elements from front of q to its back
            int p = q.front();
            q.pop();
            q.push(p);
        }
    }
}
 
// Function to print all the elements
// of the queue.
void print(queue<int> qr)
{
    while (!qr.empty()) {
        cout << qr.front() << " ";
        qr.pop();
    }
    cout << endl;
}
 
// Driver Code
int main()
{
    queue<int> q;
 
    // Pushing into the queue
    q.push(10);
    q.push(20);
    q.push(30);
    q.push(40);
    q.push(50);
    q.push(60);
    print(q);
 
    // Removing 39 from the queue
    remove(39, q);
    print(q);
 
    // Removing 30 from the queue
    remove(30, q);
    print(q);
    return 0;
}

Java

// Java program for the above approach.
 
import java.util.*;
 
class GFG{
 
// Function to remove an element from
// the queue
static Queue<Integer> q;
static void remove(int t)
{
 
    // Helper queue to store the elements
    // temporarily.
    Queue<Integer> ref = new LinkedList<>();
    int s = q.size();
    int cnt = 0;
 
    // Finding the value to be removed
    while (!q.isEmpty() && q.peek() != t) {
        ref.add(q.peek());
        q.remove();
        cnt++;
    }
 
    // If element is not found
    if (q.isEmpty()) {
        System.out.print("element not found!!" +"\n");
        while (!ref.isEmpty()) {
 
            // Pushing all the elements back into q
            q.add(ref.peek());
            ref.remove();
        }
    }
 
    // If element is found
    else {
        q.remove();
        while (!ref.isEmpty()) {
 
            // Pushing all the elements back into q
            q.add(ref.peek());
            ref.remove();
        }
        int k = s - cnt - 1;
        while (k-- >0) {
 
            // Pushing elements from front of q to its back
            int p = q.peek();
            q.remove();
            q.add(p);
        }
    }
}
 
// Function to print all the elements
// of the queue.
static void print()
{
    Queue<Integer> qr = new LinkedList<>(q);
    while (!qr.isEmpty()) {
        System.out.print(qr.peek()+ " ");
        qr.remove();
    }
 
    System.out.println();
}
 
// Driver Code
public static void main(String[] args)
{
    q = new LinkedList<>();
 
    // Pushing into the queue
    q.add(10);
    q.add(20);
    q.add(30);
    q.add(40);
    q.add(50);
    q.add(60);
    print();
 
    // Removing 39 from the queue
    remove(39);
    print();
 
    // Removing 30 from the queue
    remove(30);
    print();
}
}
 
// This code is contributed by 29AjayKumar

C#

// C# program for the above approach.
using System;
using System.Collections;
public class GFG{
     
      // Function to remove an element from
// the queue
static Queue q = new Queue();
static void remove_(int t)
{
 
    // Helper queue to store the elements
    // temporarily.
    Queue reff = new Queue();
    int s = q.Count;
    int cnt = 0;
 
    // Finding the value to be removed
    while ((int)q.Count != 0 && (int)q.Peek() != t) {
       
        reff.Enqueue(q.Peek());
        q.Dequeue();
        cnt++;
    }
 
    // If element is not found
    if (q.Count == 0) {
        Console.WriteLine("element not found!!");
           
        while (reff.Count != 0) {
             
            // Pushing all the elements back into q
            q.Enqueue(reff.Peek());
            reff.Dequeue();
        }
    }
 
    // If element is found
    else {
        q.Dequeue();
        while (reff.Count != 0) {
 
            // Pushing all the elements back into q
            q.Enqueue(reff.Peek());
            reff.Dequeue();
        }
        int k = s - cnt - 1;
        while (k-- >0) {
 
            // Pushing elements from front of q to its back
            int p = (int)q.Peek();
            q.Dequeue();
            q.Enqueue(p);
        }
    }
}
 
// Function to print all the elements
// of the queue.
static void print()
{
    Queue qr = (Queue)q.Clone();
    while (qr.Count != 0) {
        Console.Write(qr.Peek()+ " ");
        qr.Dequeue();
    }
 
    Console.WriteLine();
}
 
// Driver Code
static public void Main (){
 
    // Pushing into the queue
    q.Enqueue(10);
    q.Enqueue(20);
    q.Enqueue(30);
    q.Enqueue(40);
    q.Enqueue(50);
    q.Enqueue(60);
   
    print();
 
    // Removing 39 from the queue
    remove_(39);
    print();
 
    // Removing 30 from the queue
    remove_(30);
    print();
}
}
 
// This code is contributed by Dharanendra L V.
Producción

10 20 30 40 50 60 
element not found!!
10 20 30 40 50 60 
10 20 40 50 60 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por adityamutharia y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *